La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry

Identifieur interne : 002267 ( Istex/Corpus ); précédent : 002266; suivant : 002268

A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry

Auteurs : François Vasseur ; Cyrille Violle ; Brian J. Enquist ; Christine Granier ; Denis Vile

Source :

RBID : ISTEX:CC20B51A7A18EF879009A30459A3101940193354

Abstract

Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.

Url:
DOI: 10.1111/j.1461-0248.2012.01839.x

Links to Exploration step

ISTEX:CC20B51A7A18EF879009A30459A3101940193354

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
<author>
<name sortKey="Vasseur, Francois" sort="Vasseur, Francois" uniqKey="Vasseur F" first="François" last="Vasseur">François Vasseur</name>
<affiliation>
<mods:affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Violle, Cyrille" sort="Violle, Cyrille" uniqKey="Violle C" first="Cyrille" last="Violle">Cyrille Violle</name>
<affiliation>
<mods:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR5175, F‐34000, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enquist, Brian J" sort="Enquist, Brian J" uniqKey="Enquist B" first="Brian J." last="Enquist">Brian J. Enquist</name>
<affiliation>
<mods:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Santa Fe Institute, 1399 Hyde Park Road, New Mexico, 87501, Santa Fe, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Granier, Christine" sort="Granier, Christine" uniqKey="Granier C" first="Christine" last="Granier">Christine Granier</name>
<affiliation>
<mods:affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vile, Denis" sort="Vile, Denis" uniqKey="Vile D" first="Denis" last="Vile">Denis Vile</name>
<affiliation>
<mods:affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: denis.vile@supagro.inra.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CC20B51A7A18EF879009A30459A3101940193354</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1461-0248.2012.01839.x</idno>
<idno type="url">https://api.istex.fr/document/CC20B51A7A18EF879009A30459A3101940193354/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002267</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002267</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
<author>
<name sortKey="Vasseur, Francois" sort="Vasseur, Francois" uniqKey="Vasseur F" first="François" last="Vasseur">François Vasseur</name>
<affiliation>
<mods:affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Violle, Cyrille" sort="Violle, Cyrille" uniqKey="Violle C" first="Cyrille" last="Violle">Cyrille Violle</name>
<affiliation>
<mods:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR5175, F‐34000, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enquist, Brian J" sort="Enquist, Brian J" uniqKey="Enquist B" first="Brian J." last="Enquist">Brian J. Enquist</name>
<affiliation>
<mods:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Santa Fe Institute, 1399 Hyde Park Road, New Mexico, 87501, Santa Fe, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Granier, Christine" sort="Granier, Christine" uniqKey="Granier C" first="Christine" last="Granier">Christine Granier</name>
<affiliation>
<mods:affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vile, Denis" sort="Vile, Denis" uniqKey="Vile D" first="Denis" last="Vile">Denis Vile</name>
<affiliation>
<mods:affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: denis.vile@supagro.inra.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Ecology Letters</title>
<title level="j" type="abbrev">Ecol Lett</title>
<idno type="ISSN">1461-023X</idno>
<idno type="eISSN">1461-0248</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2012-10">2012-10</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1149">1149</biblScope>
<biblScope unit="page" to="1157">1157</biblScope>
</imprint>
<idno type="ISSN">1461-023X</idno>
</series>
<idno type="istex">CC20B51A7A18EF879009A30459A3101940193354</idno>
<idno type="DOI">10.1111/j.1461-0248.2012.01839.x</idno>
<idno type="ArticleID">ELE1839</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1461-023X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<editor>
<json:item>
<name>Hafiz Maherali</name>
</json:item>
</editor>
<author>
<json:item>
<name>François Vasseur</name>
<affiliations>
<json:string>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Cyrille Violle</name>
<affiliations>
<json:string>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</json:string>
<json:string>Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR5175, F‐34000, Montpellier, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Brian J. Enquist</name>
<affiliations>
<json:string>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</json:string>
<json:string>The Santa Fe Institute, 1399 Hyde Park Road, New Mexico, 87501, Santa Fe, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christine Granier</name>
<affiliations>
<json:string>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Denis Vile</name>
<affiliations>
<json:string>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</json:string>
<json:string>E-mail: denis.vile@supagro.inra.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Arabidopsis thaliana</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flowering time</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>functional trait</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>growth rate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>leaf economics spectrum</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>life history</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>metabolic scaling theory</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>net photosynthetic rate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>plant allometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>quantitative trait loci</value>
</json:item>
</subject>
<articleId>
<json:string>ELE1839</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>letter</json:string>
</originalGenre>
<abstract>Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.</abstract>
<qualityIndicators>
<score>8.872</score>
<pdfVersion>1.7</pdfVersion>
<pdfPageSize>595.276 x 805.039 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1065</abstractCharCount>
<pdfWordCount>7101</pdfWordCount>
<pdfCharCount>43254</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>156</abstractWordCount>
</qualityIndicators>
<title>A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>C. Alonso‐Blanco</name>
</json:item>
<json:item>
<name>A.J.M. Peeters</name>
</json:item>
<json:item>
<name>M. Koornneef</name>
</json:item>
<json:item>
<name>C. Lister</name>
</json:item>
<json:item>
<name>C. Dean</name>
</json:item>
<json:item>
<name>N. van den Bosch</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>271</last>
<first>259</first>
</pages>
<author></author>
<title>Plant J.</title>
</host>
<title>Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Alonso‐Blanco</name>
</json:item>
<json:item>
<name>S.E.D. El‐Assal</name>
</json:item>
<json:item>
<name>G. Coupland</name>
</json:item>
<json:item>
<name>M. Koornneef</name>
</json:item>
</author>
<host>
<volume>149</volume>
<pages>
<last>764</last>
<first>749</first>
</pages>
<author></author>
<title>Genetics</title>
</host>
<title>Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde islands ecotypes of Arabidopsis thaliana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Alonso‐Blanco</name>
</json:item>
<json:item>
<name>M.G.M. Aarts</name>
</json:item>
<json:item>
<name>L. Bentsink</name>
</json:item>
<json:item>
<name>J.J.B. Keurentjes</name>
</json:item>
<json:item>
<name>M. Reymond</name>
</json:item>
<json:item>
<name>D. Vreugdenhil</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>1896</last>
<first>1877</first>
</pages>
<author></author>
<title>Plant Cell</title>
</host>
<title>What has natural variation taught us about plant development, physiology, and adaptation?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Baraloto</name>
</json:item>
<json:item>
<name>C.E.T. Paine</name>
</json:item>
<json:item>
<name>L. Poorter</name>
</json:item>
<json:item>
<name>J. Beauchene</name>
</json:item>
<json:item>
<name>D. Bonal</name>
</json:item>
<json:item>
<name>A.M. Domenach</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>1347</last>
<first>1338</first>
</pages>
<author></author>
<title>Ecol. Lett.</title>
</host>
<title>Decoupled leaf and stem economics in rain forest trees</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Blonder</name>
</json:item>
<json:item>
<name>C. Violle</name>
</json:item>
<json:item>
<name>L.P. Bentley</name>
</json:item>
<json:item>
<name>B.J. Enquist</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>100</last>
<first>91</first>
</pages>
<author></author>
<title>Ecol. Lett.</title>
</host>
<title>Venation networks and the origin of the leaf economics spectrum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Bomblies</name>
</json:item>
<json:item>
<name>J. Lempe</name>
</json:item>
<json:item>
<name>P. Epple</name>
</json:item>
<json:item>
<name>N. Warthmann</name>
</json:item>
<json:item>
<name>C. Lanz</name>
</json:item>
<json:item>
<name>J.L. Dangl</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>1972</last>
<first>1962</first>
</pages>
<author></author>
<title>PLoS Biol.</title>
</host>
<title>Autoimmune response as a mechanism for a Dobzhansky‐Muller‐type incompatibility syndrome in plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.S. Chapin</name>
</json:item>
<json:item>
<name>K. Autumn</name>
</json:item>
<json:item>
<name>F. Pugnaire</name>
</json:item>
</author>
<host>
<volume>142</volume>
<pages>
<last>92</last>
<first>78</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>Evolution of suites of traits in response to environmental stress</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Charnov, E.L. (1993). Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford University Press, Oxford, England/New York.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.S. Coleman</name>
</json:item>
<json:item>
<name>K.D.M. McConnaughay</name>
</json:item>
<json:item>
<name>D.D. Ackerly</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>191</last>
<first>187</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>Interpreting phenotypic variation in plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.A. Donovan</name>
</json:item>
<json:item>
<name>H. Maherali</name>
</json:item>
<json:item>
<name>C.M. Caruso</name>
</json:item>
<json:item>
<name>H. Huber</name>
</json:item>
<json:item>
<name>H. de Kroon</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>95</last>
<first>88</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>The evolution of the worldwide leaf economics spectrum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.R. Doyle</name>
</json:item>
<json:item>
<name>C.M. Bizzell</name>
</json:item>
<json:item>
<name>M.R. Keller</name>
</json:item>
<json:item>
<name>S.D. Michaels</name>
</json:item>
<json:item>
<name>J.D. Song</name>
</json:item>
<json:item>
<name>Y.S. Noh</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>385</last>
<first>376</first>
</pages>
<author></author>
<title>Plant J.</title>
</host>
<title>HUA2 is required for the expression of floral repressors in Arabidopsis thaliana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.E. Edwards</name>
</json:item>
<json:item>
<name>B.E. Ewers</name>
</json:item>
<json:item>
<name>D.G. Williams</name>
</json:item>
<json:item>
<name>Q.G. Xie</name>
</json:item>
<json:item>
<name>P. Lou</name>
</json:item>
<json:item>
<name>X.D. Xu</name>
</json:item>
</author>
<host>
<volume>189</volume>
<pages>
<first>375‐1107</first>
</pages>
<author></author>
<title>Genetics</title>
</host>
<title>The genetic architecture of ecophysiological and circadian traits in Brassica rapa</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.E.D. El‐Assal</name>
</json:item>
<json:item>
<name>C. Alonso‐Blanco</name>
</json:item>
<json:item>
<name>A.J.M. Peeters</name>
</json:item>
<json:item>
<name>V. Raz</name>
</json:item>
<json:item>
<name>M. Koornneef</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>440</last>
<first>435</first>
</pages>
<author></author>
<title>Nat. Genet.</title>
</host>
<title>A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.J. Enquist</name>
</json:item>
<json:item>
<name>L.P. Bentley</name>
</json:item>
</author>
<host>
<pages>
<last>187</last>
<first>164</first>
</pages>
<author></author>
<title>Metabolic ecology: a scaling approach</title>
</host>
<title>Land plants: new theoretical directions and empirical prospects</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.J. Enquist</name>
</json:item>
<json:item>
<name>B.H. Tiffney</name>
</json:item>
<json:item>
<name>K.J. Niklas</name>
</json:item>
</author>
<host>
<volume>168</volume>
<pages>
<last>749</last>
<first>729</first>
</pages>
<author></author>
<title>Int. J. Plant Sci.</title>
</host>
<title>Metabolic scaling and the evolutionary dynamics of plant size, form, and diversity: toward a synthesis of ecology, evolution, and paleontology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.J. Enquist</name>
</json:item>
<json:item>
<name>A.P. Allen</name>
</json:item>
<json:item>
<name>J.H. Brown</name>
</json:item>
<json:item>
<name>J.F. Gillooly</name>
</json:item>
<json:item>
<name>A.J. Kerkhoff</name>
</json:item>
<json:item>
<name>K.J. Niklas</name>
</json:item>
</author>
<host>
<volume>445</volume>
<pages>
<last>10</last>
<first>9</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Does the exception prove the rule?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.J. Flood</name>
</json:item>
<json:item>
<name>J. Harbinson</name>
</json:item>
<json:item>
<name>M.G. Aarts</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>35</last>
<first>327</first>
</pages>
<author></author>
<title>Trends in Plant Sci.</title>
</host>
<title>Natural genetic variation in plant photosynthesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Fu</name>
</json:item>
<json:item>
<name>J.J. Keurentjes</name>
</json:item>
<json:item>
<name>H. Bouwmeester</name>
</json:item>
<json:item>
<name>T. America</name>
</json:item>
<json:item>
<name>F.W. Verstappen</name>
</json:item>
<json:item>
<name>J.L. Ward</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>7</last>
<first>166</first>
</pages>
<author></author>
<title>Nat. Genet.</title>
</host>
<title>System‐wide molecular evidence for phenotypic buffering in Arabidopsis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.J. Givnish</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>92</last>
<first>63</first>
</pages>
<author></author>
<title>Aust. J. Plant Physiol.</title>
</host>
<title>Adaptation to sun and shade ‐ a whole‐plant perspective</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.S. Glazier</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>662</last>
<first>611</first>
</pages>
<author></author>
<title>Biol. Rev.</title>
</host>
<title>Beyond the ‘3/4‐power law’: variation in the intra‐ and interspecific scaling of metabolic rate in animals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.J. Gould</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>640</last>
<first>587</first>
</pages>
<author></author>
<title>Biol. Rev.</title>
</host>
<title>Allometry and size in ontogeny and phylogeny</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Granier</name>
</json:item>
<json:item>
<name>L. Aguirrezabal</name>
</json:item>
<json:item>
<name>K. Chenu</name>
</json:item>
<json:item>
<name>S.J. Cookson</name>
</json:item>
<json:item>
<name>M. Dauzat</name>
</json:item>
<json:item>
<name>P. Hamard</name>
</json:item>
</author>
<host>
<volume>169</volume>
<pages>
<last>35</last>
<first>623</first>
</pages>
<author></author>
<title>New Phytol.</title>
</host>
<title>PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.M. Hancock</name>
</json:item>
<json:item>
<name>B. Brachi</name>
</json:item>
<json:item>
<name>N. Faure</name>
</json:item>
<json:item>
<name>M.W. Horton</name>
</json:item>
<json:item>
<name>L.B. Jarymowycz</name>
</json:item>
<json:item>
<name>F.G. Sperone</name>
</json:item>
</author>
<host>
<volume>334</volume>
<pages>
<last>6</last>
<first>83</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Adaptation to climate across the Arabidopsis thaliana genome</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Huxley, J.S. (1932). Problems of Relative Growth. Methuen & Co. Ltd, London.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.J. Keurentjes</name>
</json:item>
<json:item>
<name>L. Bentsink</name>
</json:item>
<json:item>
<name>C. Alonso‐Blanco</name>
</json:item>
<json:item>
<name>C.J. Hanhart</name>
</json:item>
<json:item>
<name>H. Blankestijn‐De Vries</name>
</json:item>
<json:item>
<name>S. Effgen</name>
</json:item>
</author>
<host>
<volume>175</volume>
<pages>
<last>905</last>
<first>891</first>
</pages>
<author></author>
<title>Genetics</title>
</host>
<title>Development of a near‐isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Kikuzawa</name>
</json:item>
</author>
<host>
<volume>138</volume>
<pages>
<last>1263</last>
<first>1250</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>A cost‐benefit‐analysis of leaf habit and leaf longevity of trees and their geographical pattern</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Kikuzawa</name>
</json:item>
<json:item>
<name>M.J. Lechowicz</name>
</json:item>
</author>
<host>
<volume>168</volume>
<pages>
<last>383</last>
<first>373</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Kolokotrones</name>
</json:item>
<json:item>
<name>V. Savage</name>
</json:item>
<json:item>
<name>E.J. Deeds</name>
</json:item>
<json:item>
<name>W. Fontana</name>
</json:item>
</author>
<host>
<volume>464</volume>
<pages>
<last>756</last>
<first>753</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Curvature in metabolic scaling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Masle</name>
</json:item>
<json:item>
<name>S.R. Gilmore</name>
</json:item>
<json:item>
<name>G.D. Farquhar</name>
</json:item>
</author>
<host>
<volume>436</volume>
<pages>
<last>70</last>
<first>866</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>The ERECTA gene regulates plant transpiration efficiency in Arabidopsis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.K. McKay</name>
</json:item>
<json:item>
<name>J.H. Richards</name>
</json:item>
<json:item>
<name>T. Mitchell‐Olds</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1151</last>
<first>1137</first>
</pages>
<author></author>
<title>Mol. Ecol.</title>
</host>
<title>Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Mendez‐Vigo</name>
</json:item>
<json:item>
<name>M. Andres</name>
</json:item>
<json:item>
<name>M. Ramiro</name>
</json:item>
<json:item>
<name>J.M. Martinez‐Zapater</name>
</json:item>
<json:item>
<name>C. Alonso‐Blanco</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>1623</last>
<first>1611</first>
</pages>
<author></author>
<title>J. Exp. Bot.</title>
</host>
<title>Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.J.E. Metcalf</name>
</json:item>
<json:item>
<name>T. Mitchell‐Olds</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>600</last>
<first>593</first>
</pages>
<author></author>
<title>Ecol. Lett.</title>
</host>
<title>Life history in a model system: opening the black box with Arabidopsis thaliana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Mitchell‐Olds</name>
</json:item>
<json:item>
<name>J. Schmitt</name>
</json:item>
</author>
<host>
<volume>441</volume>
<pages>
<last>952</last>
<first>947</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Mori</name>
</json:item>
<json:item>
<name>K. Yamaji</name>
</json:item>
<json:item>
<name>A. Ishida</name>
</json:item>
<json:item>
<name>S.G. Prokushkin</name>
</json:item>
<json:item>
<name>O.V. Masyagina</name>
</json:item>
<json:item>
<name>A. Hagihara</name>
</json:item>
</author>
<host>
<volume>107</volume>
<pages>
<last>1451</last>
<first>1447</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>Mixed‐power scaling of whole‐plant respiration from seedlings to giant trees</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Niklas, K.J. (1994). Plant allometry ‐ The Scalling of Form and Process. 1st edn The University of Chicago Press, Chicago.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M.E. Olson</name>
</json:item>
<json:item>
<name>R. Aguirre‐Hernandez</name>
</json:item>
<json:item>
<name>J.A. Rosell</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>219</last>
<first>210</first>
</pages>
<author></author>
<title>Ecol. Lett.</title>
</host>
<title>Universal foliage‐stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner's Rules</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Pavlicev</name>
</json:item>
<json:item>
<name>G.P. Wagner</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>322</last>
<first>316</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>A model of developmental evolution: selection, pleiotropy and compensation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Poorter</name>
</json:item>
<json:item>
<name>C.P.E. van Rijn</name>
</json:item>
<json:item>
<name>T.K. Vanhala</name>
</json:item>
<json:item>
<name>K.J.F. Verhoeven</name>
</json:item>
<json:item>
<name>Y.E.M. de Jong</name>
</json:item>
<json:item>
<name>P. Stam</name>
</json:item>
</author>
<host>
<volume>142</volume>
<pages>
<last>377</last>
<first>360</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.A. Price</name>
</json:item>
<json:item>
<name>B.J. Enquist</name>
</json:item>
<json:item>
<name>V.M. Savage</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>9</last>
<first>13204</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>A general model for allometric covariation in botanical form and function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.B. Reich</name>
</json:item>
<json:item>
<name>M.B. Walters</name>
</json:item>
<json:item>
<name>D.S. Ellsworth</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>13734</last>
<first>13730</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>From tropics to tundra: Global convergence in plant functioning</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.B. Reich</name>
</json:item>
<json:item>
<name>D.S. Ellsworth</name>
</json:item>
<json:item>
<name>M.B. Walters</name>
</json:item>
<json:item>
<name>J.M. Vose</name>
</json:item>
<json:item>
<name>C. Gresham</name>
</json:item>
<json:item>
<name>J.C. Vollin</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>1969</last>
<first>1955</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Generality of leaf trait relationships: A test across six biomes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.B. Reich</name>
</json:item>
<json:item>
<name>M.G. Tjoelker</name>
</json:item>
<json:item>
<name>J.L. Machado</name>
</json:item>
<json:item>
<name>J. Oleksyn</name>
</json:item>
</author>
<host>
<volume>439</volume>
<pages>
<last>461</last>
<first>457</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Universal scaling of respiratory metabolism, size and nitrogen in plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.U. Riisgard</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>73</last>
<first>71</first>
</pages>
<author></author>
<title>Ecol. Lett.</title>
</host>
<title>No foundation of a “3/4 power scaling law” for respiration in biology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Shipley</name>
</json:item>
<json:item>
<name>M.J. Lechowicz</name>
</json:item>
<json:item>
<name>I. Wright</name>
</json:item>
<json:item>
<name>P.B. Reich</name>
</json:item>
</author>
<host>
<volume>87</volume>
<pages>
<last>541</last>
<first>535</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Fundamental trade‐offs generating the worldwide leaf economics spectrum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Tisné</name>
</json:item>
<json:item>
<name>M. Reymond</name>
</json:item>
<json:item>
<name>D. Vile</name>
</json:item>
<json:item>
<name>J. Fabre</name>
</json:item>
<json:item>
<name>M. Dauzat</name>
</json:item>
<json:item>
<name>M. Koornneef</name>
</json:item>
</author>
<host>
<volume>148</volume>
<pages>
<last>1127</last>
<first>1117</first>
</pages>
<author></author>
<title>Plant Physiol.</title>
</host>
<title>Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Q. Wang</name>
</json:item>
<json:item>
<name>U. Sajja</name>
</json:item>
<json:item>
<name>S. Rosloski</name>
</json:item>
<json:item>
<name>T. Humphrey</name>
</json:item>
<json:item>
<name>M.C. Kim</name>
</json:item>
<json:item>
<name>K. Bomblies</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>1519</last>
<first>1513</first>
</pages>
<author></author>
<title>Curr. Biol.</title>
</host>
<title>HUA2 caused natural variation in shoot morphology of A. thaliana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.B. West</name>
</json:item>
<json:item>
<name>J.H. Brown</name>
</json:item>
<json:item>
<name>B.J. Enquist</name>
</json:item>
</author>
<host>
<volume>400</volume>
<pages>
<last>667</last>
<first>664</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>A general model for the structure and allometry of plant vascular systems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.B. West</name>
</json:item>
<json:item>
<name>J.H. Brown</name>
</json:item>
<json:item>
<name>B.J. Enquist</name>
</json:item>
</author>
<host>
<volume>284</volume>
<pages>
<last>1679</last>
<first>1677</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>The fourth dimension of life: fractal geometry and allometric scaling of organisms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Westoby</name>
</json:item>
<json:item>
<name>D. Warton</name>
</json:item>
<json:item>
<name>P.B. Reich</name>
</json:item>
</author>
<host>
<volume>155</volume>
<pages>
<last>656</last>
<first>649</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>The time value of leaf area</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Westoby</name>
</json:item>
<json:item>
<name>D.S. Falster</name>
</json:item>
<json:item>
<name>A.T. Moles</name>
</json:item>
<json:item>
<name>P.A. Vesk</name>
</json:item>
<json:item>
<name>I.J. Wright</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>159</last>
<first>125</first>
</pages>
<author></author>
<title>Annu. Rev. Ecol. Syst.</title>
</host>
<title>Plant ecological strategies: Some leading dimensions of variation between species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I.J. Wright</name>
</json:item>
<json:item>
<name>P.B. Reich</name>
</json:item>
<json:item>
<name>M. Westoby</name>
</json:item>
<json:item>
<name>D.D. Ackerly</name>
</json:item>
<json:item>
<name>Z. Baruch</name>
</json:item>
<json:item>
<name>F. Bongers</name>
</json:item>
</author>
<host>
<volume>428</volume>
<pages>
<last>827</last>
<first>821</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>The worldwide leaf economics spectrum</title>
</json:item>
</refBibs>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>15</volume>
<publisherId>
<json:string>ELE</json:string>
</publisherId>
<pages>
<total>9</total>
<last>1157</last>
<first>1149</first>
</pages>
<issn>
<json:string>1461-023X</json:string>
</issn>
<issue>10</issue>
<subject>
<json:item>
<value>Letter</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1461-0248</json:string>
</eissn>
<title>Ecology Letters</title>
<doi>
<json:string>10.1111/(ISSN)1461-0248</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>ecology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1461-0248.2012.01839.x</json:string>
</doi>
<id>CC20B51A7A18EF879009A30459A3101940193354</id>
<score>0.14155531</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CC20B51A7A18EF879009A30459A3101940193354/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CC20B51A7A18EF879009A30459A3101940193354/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CC20B51A7A18EF879009A30459A3101940193354/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright © 2012 Blackwell Publishing Ltd/CNRS© 2012 Blackwell Publishing Ltd/CNRS</p>
</availability>
<date>2012-07-11</date>
</publicationStmt>
<notesStmt>
<note>CIFRE</note>
<note>BAYER Crop Science - No. 0398/2009 ‐ 09 42 008;</note>
<note>Marie Curie International Outgoing Fellowship - No. 221060;</note>
<note>NSF</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
<author xml:id="author-1">
<persName>
<forename type="first">François</forename>
<surname>Vasseur</surname>
</persName>
<affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Cyrille</forename>
<surname>Violle</surname>
</persName>
<affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</affiliation>
<affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR5175, F‐34000, Montpellier, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Brian J.</forename>
<surname>Enquist</surname>
</persName>
<affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</affiliation>
<affiliation>The Santa Fe Institute, 1399 Hyde Park Road, New Mexico, 87501, Santa Fe, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Christine</forename>
<surname>Granier</surname>
</persName>
<affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Denis</forename>
<surname>Vile</surname>
</persName>
<email>denis.vile@supagro.inra.fr</email>
<affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</affiliation>
</author>
<editor>
<persName>
<forename type="first">Hafiz</forename>
<surname>Maherali</surname>
</persName>
</editor>
</analytic>
<monogr>
<title level="j">Ecology Letters</title>
<title level="j" type="abbrev">Ecol Lett</title>
<idno type="pISSN">1461-023X</idno>
<idno type="eISSN">1461-0248</idno>
<idno type="DOI">10.1111/(ISSN)1461-0248</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2012-10"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1149">1149</biblScope>
<biblScope unit="page" to="1157">1157</biblScope>
</imprint>
</monogr>
<idno type="istex">CC20B51A7A18EF879009A30459A3101940193354</idno>
<idno type="DOI">10.1111/j.1461-0248.2012.01839.x</idno>
<idno type="ArticleID">ELE1839</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-07-11</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Arabidopsis thaliana</term>
</item>
<item>
<term>flowering time</term>
</item>
<item>
<term>functional trait</term>
</item>
<item>
<term>growth rate</term>
</item>
<item>
<term>leaf economics spectrum</term>
</item>
<item>
<term>life history</term>
</item>
<item>
<term>metabolic scaling theory</term>
</item>
<item>
<term>net photosynthetic rate</term>
</item>
<item>
<term>plant allometry</term>
</item>
<item>
<term>quantitative trait loci</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Letter</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-03-13">Received</change>
<change when="2012-06-29">Registration</change>
<change when="2012-07-11">Created</change>
<change when="2012-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/CC20B51A7A18EF879009A30459A3101940193354/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:id="ele1839" xml:lang="en">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1111/(ISSN)1461-0248</doi>
<issn type="print">1461-023X</issn>
<issn type="electronic">1461-0248</issn>
<idGroup>
<id type="product" value="ELE"></id>
</idGroup>
<titleGroup>
<title sort="ECOLOGY LETTERS" type="main">Ecology Letters</title>
<title type="short">Ecol Lett</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10110">
<doi origin="wiley">10.1111/ele.2012.15.issue-10</doi>
<copyright ownership="publisher">Copyright © 2012 Blackwell Publishing Ltd/CNRS</copyright>
<numberingGroup>
<numbering type="journalVolume" number="15">15</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2012-10">October 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="90" status="forIssue" type="letter">
<doi>10.1111/j.1461-0248.2012.01839.x</doi>
<idGroup>
<id type="unit" value="ELE1839"></id>
</idGroup>
<countGroup>
<count number="9" type="pageTotal"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Letter</title>
<title type="tocHeading1">Letters</title>
</titleGroup>
<copyright ownership="publisher">© 2012 Blackwell Publishing Ltd/CNRS</copyright>
<eventGroup>
<event date="2012-03-13" type="manuscriptReceived"></event>
<event date="2012-04-20" type="manuscriptRevised"></event>
<event date="2012-06-18" type="manuscriptRevised"></event>
<event date="2012-06-20" type="manuscriptRevised"></event>
<event date="2012-06-22" type="manuscriptRevised"></event>
<event date="2012-06-29" type="manuscriptAccepted"></event>
<event agent="SPS" date="2012-07-11" type="xmlCreated"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-07-31"></event>
<event type="firstOnline" date="2012-07-31"></event>
<event type="publishedOnlineFinalForm" date="2012-09-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-24"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1149</numbering>
<numbering type="pageLast">1157</numbering>
</numberingGroup>
<correspondenceTo>
<i>Correspondence: E‐mail</i>
:
<email>denis.vile@supagro.inra.fr</email>
</correspondenceTo>
<selfCitationGroup>
<citation type="self" xml:id="ele1839-cit-0052">
<i>Ecology Letters</i>
(2012)
<b>15:</b>
1149–1157</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:ELE.ELE1839.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
<title type="shortAuthors">Vasseur
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator affiliationRef="#ele1839-aff-0001" creatorRole="author" xml:id="ele1839-cr-0001">
<personName>
<givenNames>François</givenNames>
<familyName>Vasseur</familyName>
</personName>
</creator>
<creator affiliationRef="#ele1839-aff-0002 #ele1839-aff-0003" creatorRole="author" xml:id="ele1839-cr-0002">
<personName>
<givenNames>Cyrille</givenNames>
<familyName>Violle</familyName>
</personName>
</creator>
<creator affiliationRef="#ele1839-aff-0002 #ele1839-aff-0004" creatorRole="author" xml:id="ele1839-cr-0003">
<personName>
<givenNames>Brian J.</givenNames>
<familyName>Enquist</familyName>
</personName>
</creator>
<creator affiliationRef="#ele1839-aff-0001" creatorRole="author" xml:id="ele1839-cr-0004">
<personName>
<givenNames>Christine</givenNames>
<familyName>Granier</familyName>
</personName>
</creator>
<creator affiliationRef="#ele1839-aff-0001" corresponding="yes" creatorRole="author" xml:id="ele1839-cr-0005">
<personName>
<givenNames>Denis</givenNames>
<familyName>Vile</familyName>
</personName>
</creator>
<creator creatorRole="editor" xml:id="ele1839-cr-0006">
<personName>
<givenNames>Hafiz</givenNames>
<familyName>Maherali</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="ele1839-aff-0001">
<orgDiv>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE)</orgDiv>
<orgName>INRA, Montpellier SupAgro</orgName>
<address>
<postCode>F‐34060</postCode>
<city>Montpellier</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="ele1839-aff-0002">
<orgDiv>Department of Ecology and Evolutionary Biology</orgDiv>
<orgName>University of Arizona</orgName>
<address>
<street>1041 E Lowell St</street>
<city>Tucson</city>
<countryPart>Arizona</countryPart>
<postCode>85721</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="ele1839-aff-0003">
<orgDiv>Centre d'Ecologie Fonctionnelle et Evolutive</orgDiv>
<orgName>CNRS, UMR5175</orgName>
<address>
<postCode>F‐34000</postCode>
<city>Montpellier</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="ele1839-aff-0004">
<orgName>The Santa Fe Institute</orgName>
<address>
<street>1399 Hyde Park Road</street>
<city>Santa Fe</city>
<countryPart>New Mexico</countryPart>
<postCode>87501</postCode>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="ele1839-kwd-0001">
<i>
<fc>A</fc>
rabidopsis thaliana</i>
</keyword>
<keyword xml:id="ele1839-kwd-0002">flowering time</keyword>
<keyword xml:id="ele1839-kwd-0003">functional trait</keyword>
<keyword xml:id="ele1839-kwd-0004">growth rate</keyword>
<keyword xml:id="ele1839-kwd-0005">leaf economics spectrum</keyword>
<keyword xml:id="ele1839-kwd-0006">life history</keyword>
<keyword xml:id="ele1839-kwd-0007">metabolic scaling theory</keyword>
<keyword xml:id="ele1839-kwd-0008">net photosynthetic rate</keyword>
<keyword xml:id="ele1839-kwd-0009">plant allometry</keyword>
<keyword xml:id="ele1839-kwd-0010">quantitative trait loci</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>CIFRE</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>BAYER Crop Science</fundingAgency>
<fundingNumber>0398/2009 ‐ 09 42 008</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Marie Curie International Outgoing Fellowship</fundingAgency>
<fundingNumber>221060</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>NSF</fundingAgency>
</fundingInfo>
<supportingInformation>
<p>As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organised for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.</p>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0001-AppendixS1"></mediaResource>
<caption>
<b>Appendix S1.</b>
Supporting experimental procedures.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0002-AppendixS2"></mediaResource>
<caption>
<b>Appendix S2.</b>
The relationship between timing of reproduction and lifespan.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0003-FigureS1"></mediaResource>
<caption>
<b>Figure S1.</b>
Curvature in the allometric scaling of plant growth. (A) Log
<sub>10</sub>
‐transformed relationship between growth rate and plant dry mass. Linear regression (SMA, blue line) and quadratic fitting (red line) are shown. Gray: individuals; black: mean of each RIL.(B) Residuals from the linear (SMA) fit. (C) Residuals from the quadratic fit.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0004-FigureS2"></mediaResource>
<caption>
<b>Figure S2.</b>
Slope of the allometric scaling of plant growth. Slope of the quadratic fit (red line) with 95% pointwise confidence interval (black lines), slope of the log‐linear fit (blue line) with 95% confidence interval and predicted ¾‐power law (dotted black line).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0005-FigureS3"></mediaResource>
<caption>
<b>Figure S3.</b>
Relationship QTLs (rQTLs) of the allometric scaling of plant growth.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0006-FigureS4"></mediaResource>
<caption>
<b>Figure S4.</b>
Comparison between intraspecific (
<i>A. thaliana</i>
, this study) and interspecific leaf economics spectrum (LES). (A) Relationship between mass‐based net photosynthetic rate and leaf dry mass per area (LMA). (B) Relationship between N concentration and LMA. Data are from the whole RIL population of this study (Experiment 1; black dots) and for the original GLOPNET data set (gray dots).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0007-FigureS5"></mediaResource>
<caption>
<b>Figure S5.</b>
Phenotypic values ( ± SE) at
<i>EDI</i>
and
<i>FLG</i>
depicting their additive effects. L
<i>er</i>
(red) and Cvi (blue) parental allele at FLG. (A) Dry mass, (B) age at flowering, (C) leaf dry mass per area (LMA), (D) mass‐based photosynthetic rate, (E) growth rate, (F) allometric exponent (
<i>θ</i>
<sub>q</sub>
), (G) N concentration. No epistatic interactions were found among traits (
<i>P</i>
 > 0.05), except for N concentration for which the difference of
<i>EDI</i>
effect depending of the allele at
<i>FLG</i>
might indicate an epistatic interaction (
<i>P</i>
< 0.01). The interaction could arise from the difficulty to get good estimates of N concentration with very small samples such as the Cvi/L
<i>er</i>
individuals.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0008-FigureS6"></mediaResource>
<caption>
<b>Figure S6.</b>
Mean phenotypic values of leaf economics traits depending on the allelic combination at
<i>EDI</i>
/
<i>FLG</i>
. (A) Age at flowering; (B) leaf mass per area (LMA); (C) mass‐based net photosynthetic rate; (D) N concentration. Parental types Cvi/Cvi (yellow) and L
<i>er</i>
/L
<i>er</i>
(green), and recombinant types Cvi/L
<i>er</i>
(blue) and L
<i>er</i>
/Cvi (red) at the loci
<i>EDI</i>
/
<i>FLG</i>
, respectively. Different letters represent significant differences (
<i>P</i>
< 0.01) in post hoc Tukey test following
<sc>anova</sc>
. Number of RILs varies between 21 and 44 depending on the allelic combination. Data from Experiment 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0009-FigureS7"></mediaResource>
<caption>
<b>Figure S7.</b>
Mean trait values ( ± SE) in the 16 RILs repeated in Experiment 1 and Experiment 2. (A) Age at flowering; (B), leaf mass per area (LMA); (C), mass‐based net photosynthetic rate. Mean value of the four RILs for each allelic combination
<i>EDI</i>
/
<i>FLG</i>
from Experiment 1 (solid bars;
<i>n</i>
 = 4) was compared with data from Experiment 2 (dashed bars;
<i>n</i>
 = 6). Parental types Cvi/Cvi (yellow) and L
<i>er</i>
/L
<i>er</i>
(green), and recombinant types Cvi/L
<i>er</i>
(blue) and L
<i>er</i>
/Cvi (red) at the loci
<i>EDI</i>
/
<i>FLG</i>
, respectively. Different letters indicate significant differences between means following a Kruskal–Wallis test (
<i>P</i>
< 0.05).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0010-FigureS8"></mediaResource>
<caption>
<b>Figure S8.</b>
Allometric scaling of plant growth in the 16 RILs (
<i>n</i>
 = 6) from Experiment 2. Parental types Cvi/Cvi (yellow squares) and L
<i>er</i>
/L
<i>er</i>
(green circles), and recombinant types Cvi/L
<i>er</i>
(blue upward triangles) and L
<i>er</i>
/Cvi (red downward triangle) at the loci
<i>EDI</i>
/
<i>FLG</i>
, respectively. Quadratic adjustment was performed with nls (R/stats), whereas SMA regression of each allelic combination was estimated with R/smatr and tested against those found in Experiment 1. No significant difference in the fitted allometric slope was found in the four RILs per allelic combination between Experiment 1 and Experiment 2 (
<i>P</i>
 = 0.06 for the four L
<i>er</i>
/L
<i>er</i>
RILs,
<i>P</i>
 = 0.40 for the four Cvi/Cvi RILs,
<i>P</i>
 = 0.83 for the four L
<i>er</i>
/Cvi RILs,
<i>P</i>
 = 0.13 for the four Cvi/L
<i>er</i>
RILs).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0011-FigureS9"></mediaResource>
<caption>
<b>Figure S9.</b>
Correlation between flowering time and leaf longevity. (A) Leaf longevity measured across the 16 repeated RILs in Experiment 2, as the age of the oldest photosynthetically active leaf at flowering (
<i>n</i>
 = 6 for each RIL).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0012-TableS1"></mediaResource>
<caption>
<b>Table S1.</b>
Meteorological data in the two experiments. Mean value ± SD of day and night air temperature (°C), air vapour pressure deficit (VPD, kPa) and light intensity (PPFD, µmol m
<sup>‐2</sup>
s
<sup>‐1</sup>
).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:1461023X:media:ele1839:ele1839-sup-0013-TableS2"></mediaResource>
<caption>
<b>Table S2.</b>
Effects of Cvi introgressions in L
<i>er</i>
(NILs) and mutations in
<i>CRY2</i>
and
<i>HUA2</i>
on functional traits. Values are the ratio of mean phenotypic values (data from Experiment 2). Each NIL introgressed at
<i>EDI</i>
(Cvi‐
<i>EDI</i>
<sub>L
<i>er</i>
</sub>
) and
<i>FLG</i>
(Cvi‐
<i>FLG</i>
<sub>L
<i>er</i>
</sub>
) was compared with the parental lines (L
<i>er</i>
and Cvi). Parents were also compared for all traits. Each mutant at
<i>CRY2</i>
(
<i>cry2</i>
<sub>Col</sub>
in Col‐4 background and
<i>cry2</i>
<sub>Ler</sub>
in L
<i>er</i>
‐0 background), and at
<i>HUA2</i>
(
<i>hua2</i>
<sub>Col</sub>
in Col‐0 background), was compared with its respective wild‐type (background). As we observed no difference between Col‐4 and Col‐0 on traits measured, we only represented Col‐0 in Figure 5, although
<i>cry2</i>
<sub>Col</sub>
was in Col‐4 background. Genotypes were compared with a post hoc Tukey test following
<sc>anova</sc>
(7 < n < 10), except for N concentration for which a non‐parametric Kruskal–Wallis test was used due to a limited number of observations (
<i>n</i>
 = 3). Significance codes: ***
<i>P</i>
< 0.001; **
<i>P</i>
< 0.01; *
<i>P</i>
< 0.05;
<i>P</i>
< 0.1.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:id="ele1839-abs-0001">
<title type="main">Abstract</title>
<p>Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (
<fc>MST</fc>
) and the leaf economics spectrum (
<fc>LES</fc>
) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of
<fc>MST</fc>
and the
<fc>LES</fc>
using a cross of two genetic variants of
<i>Arabidopsis thaliana</i>
. We show that there is enough genetic variation to generate a large fraction of variation in the
<fc>LES</fc>
and
<fc>MST</fc>
scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify
<fc>MST</fc>
and
<fc>LES</fc>
within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry</title>
</titleInfo>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Vasseur</namePart>
<affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyrille</namePart>
<namePart type="family">Violle</namePart>
<affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</affiliation>
<affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR5175, F‐34000, Montpellier, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian J.</namePart>
<namePart type="family">Enquist</namePart>
<affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, 85721, Tucson, Arizona, USA</affiliation>
<affiliation>The Santa Fe Institute, 1399 Hyde Park Road, New Mexico, 87501, Santa Fe, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Granier</namePart>
<affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Vile</namePart>
<affiliation>UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, F‐34060, Montpellier, France</affiliation>
<affiliation>E-mail: denis.vile@supagro.inra.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hafiz</namePart>
<namePart type="family">Maherali</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="letter"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2012-10</dateIssued>
<dateCreated encoding="w3cdtf">2012-07-11</dateCreated>
<dateCaptured encoding="w3cdtf">2012-03-13</dateCaptured>
<dateValid encoding="w3cdtf">2012-06-29</dateValid>
<edition>Ecology Letters (2012) 15: 1149–1157</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.</abstract>
<note type="funding">CIFRE</note>
<note type="funding">BAYER Crop Science - No. 0398/2009 ‐ 09 42 008; </note>
<note type="funding">Marie Curie International Outgoing Fellowship - No. 221060; </note>
<note type="funding">NSF</note>
<subject>
<genre>keywords</genre>
<topic>Arabidopsis thaliana</topic>
<topic>flowering time</topic>
<topic>functional trait</topic>
<topic>growth rate</topic>
<topic>leaf economics spectrum</topic>
<topic>life history</topic>
<topic>metabolic scaling theory</topic>
<topic>net photosynthetic rate</topic>
<topic>plant allometry</topic>
<topic>quantitative trait loci</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Ecology Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Ecol Lett</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organised for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.Supporting Info Item: Appendix S1. Supporting experimental procedures. - Appendix S2. The relationship between timing of reproduction and lifespan. - Figure S1. Curvature in the allometric scaling of plant growth. (A) Log10‐transformed relationship between growth rate and plant dry mass. Linear regression (SMA, blue line) and quadratic fitting (red line) are shown. Gray: individuals; black: mean of each RIL.(B) Residuals from the linear (SMA) fit. (C) Residuals from the quadratic fit. - Figure S2. Slope of the allometric scaling of plant growth. Slope of the quadratic fit (red line) with 95% pointwise confidence interval (black lines), slope of the log‐linear fit (blue line) with 95% confidence interval and predicted ¾‐power law (dotted black line). - Figure S3. Relationship QTLs (rQTLs) of the allometric scaling of plant growth. - Figure S4. Comparison between intraspecific (A. thaliana, this study) and interspecific leaf economics spectrum (LES). (A) Relationship between mass‐based net photosynthetic rate and leaf dry mass per area (LMA). (B) Relationship between N concentration and LMA. Data are from the whole RIL population of this study (Experiment 1; black dots) and for the original GLOPNET data set (gray dots). - Figure S5. Phenotypic values ( ± SE) at EDI and FLG depicting their additive effects. Ler (red) and Cvi (blue) parental allele at FLG. (A) Dry mass, (B) age at flowering, (C) leaf dry mass per area (LMA), (D) mass‐based photosynthetic rate, (E) growth rate, (F) allometric exponent (θq), (G) N concentration. No epistatic interactions were found among traits (P > 0.05), except for N concentration for which the difference of EDI effect depending of the allele at FLG might indicate an epistatic interaction (P < 0.01). The interaction could arise from the difficulty to get good estimates of N concentration with very small samples such as the Cvi/Ler individuals. - Figure S6. Mean phenotypic values of leaf economics traits depending on the allelic combination at EDI/FLG. (A) Age at flowering; (B) leaf mass per area (LMA); (C) mass‐based net photosynthetic rate; (D) N concentration. Parental types Cvi/Cvi (yellow) and Ler/Ler (green), and recombinant types Cvi/Ler (blue) and Ler/Cvi (red) at the loci EDI/FLG, respectively. Different letters represent significant differences (P < 0.01) in post hoc Tukey test following anova. Number of RILs varies between 21 and 44 depending on the allelic combination. Data from Experiment 1. - Figure S7. Mean trait values ( ± SE) in the 16 RILs repeated in Experiment 1 and Experiment 2. (A) Age at flowering; (B), leaf mass per area (LMA); (C), mass‐based net photosynthetic rate. Mean value of the four RILs for each allelic combination EDI/FLG from Experiment 1 (solid bars; n = 4) was compared with data from Experiment 2 (dashed bars; n = 6). Parental types Cvi/Cvi (yellow) and Ler/Ler (green), and recombinant types Cvi/Ler (blue) and Ler/Cvi (red) at the loci EDI/FLG, respectively. Different letters indicate significant differences between means following a Kruskal–Wallis test (P < 0.05). - Figure S8. Allometric scaling of plant growth in the 16 RILs (n = 6) from Experiment 2. Parental types Cvi/Cvi (yellow squares) and Ler/Ler (green circles), and recombinant types Cvi/Ler (blue upward triangles) and Ler/Cvi (red downward triangle) at the loci EDI/FLG, respectively. Quadratic adjustment was performed with nls (R/stats), whereas SMA regression of each allelic combination was estimated with R/smatr and tested against those found in Experiment 1. No significant difference in the fitted allometric slope was found in the four RILs per allelic combination between Experiment 1 and Experiment 2 (P = 0.06 for the four Ler/Ler RILs, P = 0.40 for the four Cvi/Cvi RILs, P = 0.83 for the four Ler/Cvi RILs, P = 0.13 for the four Cvi/Ler RILs). - Figure S9. Correlation between flowering time and leaf longevity. (A) Leaf longevity measured across the 16 repeated RILs in Experiment 2, as the age of the oldest photosynthetically active leaf at flowering (n = 6 for each RIL). - Table S1. Meteorological data in the two experiments. Mean value ± SD of day and night air temperature (°C), air vapour pressure deficit (VPD, kPa) and light intensity (PPFD, µmol m‐2 s‐1). - Table S2. Effects of Cvi introgressions in Ler (NILs) and mutations in CRY2 and HUA2 on functional traits. Values are the ratio of mean phenotypic values (data from Experiment 2). Each NIL introgressed at EDI (Cvi‐EDILer) and FLG (Cvi‐FLGLer) was compared with the parental lines (Ler and Cvi). Parents were also compared for all traits. Each mutant at CRY2 (cry2Col in Col‐4 background and cry2Ler in Ler‐0 background), and at HUA2 (hua2Col in Col‐0 background), was compared with its respective wild‐type (background). As we observed no difference between Col‐4 and Col‐0 on traits measured, we only represented Col‐0 in Figure 5, although cry2Col was in Col‐4 background. Genotypes were compared with a post hoc Tukey test following anova (7 < n < 10), except for N concentration for which a non‐parametric Kruskal–Wallis test was used due to a limited number of observations (n = 3). Significance codes: *** P < 0.001; ** P < 0.01; * P < 0.05; P < 0.1. - </note>
<subject>
<genre>article-category</genre>
<topic>Letter</topic>
</subject>
<identifier type="ISSN">1461-023X</identifier>
<identifier type="eISSN">1461-0248</identifier>
<identifier type="DOI">10.1111/(ISSN)1461-0248</identifier>
<identifier type="PublisherID">ELE</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1149</start>
<end>1157</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CC20B51A7A18EF879009A30459A3101940193354</identifier>
<identifier type="DOI">10.1111/j.1461-0248.2012.01839.x</identifier>
<identifier type="ArticleID">ELE1839</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Blackwell Publishing Ltd/CNRS© 2012 Blackwell Publishing Ltd/CNRS</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002267 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002267 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CC20B51A7A18EF879009A30459A3101940193354
   |texte=   A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024