La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microglial chimaerism in human xenografts to the rat brain

Identifieur interne : 001878 ( Istex/Corpus ); précédent : 001877; suivant : 001879

Microglial chimaerism in human xenografts to the rat brain

Auteurs : Christian Geny ; Souad Naimi-Sadaoui ; Abd El Madjid Belkadi ; Roland Jeny ; Mourad Kammoun ; Marc Peschanski

Source :

RBID : ISTEX:D27D781C361F765B4658487FA0CE56C8BB8F70F7

Abstract

Neural tissue from human fetuses is currently used for intracerebral transplantation to treat patients with Parkinson's disease. The development of the human fetal tissue following grafting has been considered mostly, up to now, from the neuronal point of view in xenografts. Very little is known, in contrast, about nonneuronal, filial, or vascular cells in the grafts. Comparison of the data gathered on the development of grafted human neurons with those obtained in comparable studies using rat transplants has demonstrated species-specific features. We have therefore undertaken a series of studies dealing with non-neuronal cells in human-to-rat transplants to reveal other possible species-specificity of the human tissue. This study has, accordingly, been devoted to the immunohistochemical analysis of microglia of host and donor origins in a human to rat xenograft paradigm allowing clear distinction of the origin of the cells. Human neural tissue was transplanted as a cell suspension into the thalamus of adult rats. Amoeboid human microglia were observed in 1-, 2-, and 3-month-old transplants, but their density, already relatively low at the first stage, decreased further over time. Ramified human microglia were only occasional. In sharp contrast, host rat microglia rapidly invaded the transplant in the absence of any sign of necrosis. The rat cells exhibited first an amoeboid morphology but progressed at the later stages toward a more mature, ramified morphology. These results indicate that donor microglia are quite few in number at first and, at least, do not proliferate actively after transplantation. They seem rather to disappear over time. The parallel migration of a large number of host microglia into the transplant and the apparent maturation of these cells lead to the formation of a cellular chimaera. Extrapolation of these results to clinical neural grafting suggests that most, if not all, microglia in fetal transplants may rapidly be of host origin in patients.

Url:
DOI: 10.1016/0361-9230(95)02004-B

Links to Exploration step

ISTEX:D27D781C361F765B4658487FA0CE56C8BB8F70F7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Microglial chimaerism in human xenografts to the rat brain</title>
<author>
<name sortKey="Geny, Christian" sort="Geny, Christian" uniqKey="Geny C" first="Christian" last="Geny">Christian Geny</name>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Naimi Sadaoui, Souad" sort="Naimi Sadaoui, Souad" uniqKey="Naimi Sadaoui S" first="Souad" last="Naimi-Sadaoui">Souad Naimi-Sadaoui</name>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Neurosciences. Département de Biologie, Faculté des Sciences Semlalia-Marrakech, Morocco</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Belkadi, Abd El Madjid" sort="Belkadi, Abd El Madjid" uniqKey="Belkadi A" first="Abd El Madjid" last="Belkadi">Abd El Madjid Belkadi</name>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeny, Roland" sort="Jeny, Roland" uniqKey="Jeny R" first="Roland" last="Jeny">Roland Jeny</name>
<affiliation>
<mods:affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kammoun, Mourad" sort="Kammoun, Mourad" uniqKey="Kammoun M" first="Mourad" last="Kammoun">Mourad Kammoun</name>
<affiliation>
<mods:affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peschanski, Marc" sort="Peschanski, Marc" uniqKey="Peschanski M" first="Marc" last="Peschanski">Marc Peschanski</name>
<affiliation>
<mods:affiliation>To whom requests for reprints should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D27D781C361F765B4658487FA0CE56C8BB8F70F7</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1016/0361-9230(95)02004-B</idno>
<idno type="url">https://api.istex.fr/document/D27D781C361F765B4658487FA0CE56C8BB8F70F7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001878</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001878</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Microglial chimaerism in human xenografts to the rat brain</title>
<author>
<name sortKey="Geny, Christian" sort="Geny, Christian" uniqKey="Geny C" first="Christian" last="Geny">Christian Geny</name>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Naimi Sadaoui, Souad" sort="Naimi Sadaoui, Souad" uniqKey="Naimi Sadaoui S" first="Souad" last="Naimi-Sadaoui">Souad Naimi-Sadaoui</name>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Neurosciences. Département de Biologie, Faculté des Sciences Semlalia-Marrakech, Morocco</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Belkadi, Abd El Madjid" sort="Belkadi, Abd El Madjid" uniqKey="Belkadi A" first="Abd El Madjid" last="Belkadi">Abd El Madjid Belkadi</name>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeny, Roland" sort="Jeny, Roland" uniqKey="Jeny R" first="Roland" last="Jeny">Roland Jeny</name>
<affiliation>
<mods:affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kammoun, Mourad" sort="Kammoun, Mourad" uniqKey="Kammoun M" first="Mourad" last="Kammoun">Mourad Kammoun</name>
<affiliation>
<mods:affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peschanski, Marc" sort="Peschanski, Marc" uniqKey="Peschanski M" first="Marc" last="Peschanski">Marc Peschanski</name>
<affiliation>
<mods:affiliation>To whom requests for reprints should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Brain Research Bulletin</title>
<title level="j" type="abbrev">BRB</title>
<idno type="ISSN">0361-9230</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1995">1995</date>
<biblScope unit="volume">38</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="383">383</biblScope>
<biblScope unit="page" to="391">391</biblScope>
</imprint>
<idno type="ISSN">0361-9230</idno>
</series>
<idno type="istex">D27D781C361F765B4658487FA0CE56C8BB8F70F7</idno>
<idno type="DOI">10.1016/0361-9230(95)02004-B</idno>
<idno type="PII">0361-9230(95)02004-B</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0361-9230</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neural tissue from human fetuses is currently used for intracerebral transplantation to treat patients with Parkinson's disease. The development of the human fetal tissue following grafting has been considered mostly, up to now, from the neuronal point of view in xenografts. Very little is known, in contrast, about nonneuronal, filial, or vascular cells in the grafts. Comparison of the data gathered on the development of grafted human neurons with those obtained in comparable studies using rat transplants has demonstrated species-specific features. We have therefore undertaken a series of studies dealing with non-neuronal cells in human-to-rat transplants to reveal other possible species-specificity of the human tissue. This study has, accordingly, been devoted to the immunohistochemical analysis of microglia of host and donor origins in a human to rat xenograft paradigm allowing clear distinction of the origin of the cells. Human neural tissue was transplanted as a cell suspension into the thalamus of adult rats. Amoeboid human microglia were observed in 1-, 2-, and 3-month-old transplants, but their density, already relatively low at the first stage, decreased further over time. Ramified human microglia were only occasional. In sharp contrast, host rat microglia rapidly invaded the transplant in the absence of any sign of necrosis. The rat cells exhibited first an amoeboid morphology but progressed at the later stages toward a more mature, ramified morphology. These results indicate that donor microglia are quite few in number at first and, at least, do not proliferate actively after transplantation. They seem rather to disappear over time. The parallel migration of a large number of host microglia into the transplant and the apparent maturation of these cells lead to the formation of a cellular chimaera. Extrapolation of these results to clinical neural grafting suggests that most, if not all, microglia in fetal transplants may rapidly be of host origin in patients.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Christian Geny</name>
<affiliations>
<json:string>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Souad Naimi-Sadaoui</name>
<affiliations>
<json:string>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</json:string>
<json:string>Laboratoire de Neurosciences. Département de Biologie, Faculté des Sciences Semlalia-Marrakech, Morocco</json:string>
</affiliations>
</json:item>
<json:item>
<name>Abd El Madjid Belkadi</name>
<affiliations>
<json:string>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Roland Jeny</name>
<affiliations>
<json:string>Hǒpital Esquirol, 94410 Saint-Maurice, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mourad Kammoun</name>
<affiliations>
<json:string>Hǒpital Esquirol, 94410 Saint-Maurice, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc Peschanski</name>
<affiliations>
<json:string>To whom requests for reprints should be addressed.</json:string>
<json:string>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Human microglia</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Immunchistochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Brain transplantation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinson's disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Human fetus</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Neural tissue from human fetuses is currently used for intracerebral transplantation to treat patients with Parkinson's disease. The development of the human fetal tissue following grafting has been considered mostly, up to now, from the neuronal point of view in xenografts. Very little is known, in contrast, about nonneuronal, filial, or vascular cells in the grafts. Comparison of the data gathered on the development of grafted human neurons with those obtained in comparable studies using rat transplants has demonstrated species-specific features. We have therefore undertaken a series of studies dealing with non-neuronal cells in human-to-rat transplants to reveal other possible species-specificity of the human tissue. This study has, accordingly, been devoted to the immunohistochemical analysis of microglia of host and donor origins in a human to rat xenograft paradigm allowing clear distinction of the origin of the cells. Human neural tissue was transplanted as a cell suspension into the thalamus of adult rats. Amoeboid human microglia were observed in 1-, 2-, and 3-month-old transplants, but their density, already relatively low at the first stage, decreased further over time. Ramified human microglia were only occasional. In sharp contrast, host rat microglia rapidly invaded the transplant in the absence of any sign of necrosis. The rat cells exhibited first an amoeboid morphology but progressed at the later stages toward a more mature, ramified morphology. These results indicate that donor microglia are quite few in number at first and, at least, do not proliferate actively after transplantation. They seem rather to disappear over time. The parallel migration of a large number of host microglia into the transplant and the apparent maturation of these cells lead to the formation of a cellular chimaera. Extrapolation of these results to clinical neural grafting suggests that most, if not all, microglia in fetal transplants may rapidly be of host origin in patients.</abstract>
<qualityIndicators>
<score>7.445</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>620 x 836 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>2003</abstractCharCount>
<pdfWordCount>4445</pdfWordCount>
<pdfCharCount>27172</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>305</abstractWordCount>
</qualityIndicators>
<title>Microglial chimaerism in human xenografts to the rat brain</title>
<pii>
<json:string>0361-9230(95)02004-B</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>K. Ashwell</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>12</last>
<first>1</first>
</pages>
<author></author>
<title>Dev. Brain Res.</title>
</host>
<title>The distribution of microglia and cell death in the fetal rat forebrain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Björklund</name>
</json:item>
<json:item>
<name>S.B. Dunnett</name>
</json:item>
<json:item>
<name>G. Nikkhah</name>
</json:item>
</author>
<host>
<pages>
<last>69</last>
<first>47</first>
</pages>
<author></author>
<title>Functional neural transplantation</title>
</host>
<title>Nigral transplants in the rat parkinson model functional limitations and strategies to enhance nigrostriatal reconstruction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>O.G. Nilsson</name>
</json:item>
<json:item>
<name>R.E. Strecker</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>B. Astedt</name>
</json:item>
<json:item>
<name>A. Björklund</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>240</last>
<first>235</first>
</pages>
<author></author>
<title>Exp. Brain Res.</title>
</host>
<title>Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>R.E. Strecker</name>
</json:item>
<json:item>
<name>H. Widner</name>
</json:item>
<json:item>
<name>D.J. Clarke</name>
</json:item>
<json:item>
<name>O.G. Nilsson</name>
</json:item>
<json:item>
<name>B. Astedt</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>A. Björklund</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>208</last>
<first>192</first>
</pages>
<author></author>
<title>Exp. Brain Res.</title>
</host>
<title>Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: Immunological aspects, spontaneous and drug-induced behaviour, and dopamine release</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Chamak</name>
</json:item>
<json:item>
<name>M. Mallat</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>527</last>
<first>513</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Fibronectine and laminin regulate the in vitro differentiation of microglial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.D. Dijkistra</name>
</json:item>
<json:item>
<name>E.A. Döpp</name>
</json:item>
<json:item>
<name>P. Joling</name>
</json:item>
<json:item>
<name>G. Kraal</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>599</last>
<first>589</first>
</pages>
<author></author>
<title>Immunology</title>
</host>
<title>The heterogeneity of mononuclear phagocytes in lymphoid organs: Distinct macrophages subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.M. Esiri</name>
</json:item>
<json:item>
<name>M.S. Al Izzi</name>
</json:item>
<json:item>
<name>M.C. Reading</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>106</last>
<first>102</first>
</pages>
<author></author>
<title>J. Clin. Pathol.</title>
</host>
<title>Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Ferrer</name>
</json:item>
<json:item>
<name>E. Bernet</name>
</json:item>
<json:item>
<name>E. Soriano</name>
</json:item>
<json:item>
<name>T. Del Rio</name>
</json:item>
<json:item>
<name>M. Fonseca</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>458</last>
<first>451</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Naturally occurring cell death in the cerebral cortex of the rat and removal of cells by transitory phagocytes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N.A. Flaris</name>
</json:item>
<json:item>
<name>T.L. Densmore</name>
</json:item>
<json:item>
<name>M.C. Molleston</name>
</json:item>
<json:item>
<name>W.F. Hickey</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>40</last>
<first>34</first>
</pages>
<author></author>
<title>Glia</title>
</host>
<title>Characterization of microglia and macrophages in the central nervous system of rats: Definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.R. Freed</name>
</json:item>
<json:item>
<name>R.E. Breeze</name>
</json:item>
<json:item>
<name>N.L. Rosenberg</name>
</json:item>
<json:item>
<name>S.A. Schneck</name>
</json:item>
<json:item>
<name>E. Kriek</name>
</json:item>
<json:item>
<name>J.X. Qi</name>
</json:item>
<json:item>
<name>T. Lone</name>
</json:item>
<json:item>
<name>Y.B. Zhang</name>
</json:item>
<json:item>
<name>J.A. Snyder</name>
</json:item>
<json:item>
<name>T.H. Wells</name>
</json:item>
<json:item>
<name>L. Olson Ramig</name>
</json:item>
<json:item>
<name>L. Thompson</name>
</json:item>
<json:item>
<name>J.C. Mazziota</name>
</json:item>
<json:item>
<name>S.C. Huang</name>
</json:item>
<json:item>
<name>S.T. Grafton</name>
</json:item>
<json:item>
<name>D. Brooks</name>
</json:item>
<json:item>
<name>G. Sawle</name>
</json:item>
<json:item>
<name>G. Schroter</name>
</json:item>
<json:item>
<name>A.A. Ansari</name>
</json:item>
</author>
<host>
<volume>327</volume>
<pages>
<last>1555</last>
<first>1549</first>
</pages>
<author></author>
<title>N. Engl. J. Med.</title>
</host>
<title>Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.J. Freed</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>134</last>
<first>109</first>
</pages>
<author></author>
<title>Restor. Neurol. Neurosci.</title>
</host>
<title>Substantia nigra grafts and Parkinson's disease: From animal experiments to human therapeutic trials</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Geny</name>
</json:item>
<json:item>
<name>S. Naimi-Sadaoui</name>
</json:item>
<json:item>
<name>R. Jeny</name>
</json:item>
<json:item>
<name>A.M. Belkadi</name>
</json:item>
<json:item>
<name>S. Juliano</name>
</json:item>
<json:item>
<name>M. Peschanski</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>7562</last>
<first>7553</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Long-term delayed vascularization of human neural transplants to the rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.J. Gould</name>
</json:item>
<json:item>
<name>S. Howard</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>390</last>
<first>383</first>
</pages>
<author></author>
<title>Neuropathol. Appl. Neurobiol.</title>
</host>
<title>An immunohistological study of macrophages in the human fetal brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Hamburger</name>
</json:item>
<json:item>
<name>R. Levi-Montacini</name>
</json:item>
</author>
<host>
<volume>111</volume>
<pages>
<last>501</last>
<first>457</first>
</pages>
<author></author>
<title>J. Exp. Zool.</title>
</host>
<title>Proliferation, differentiation in the spinal ganglia of the chick embryo under normal and experimental conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.T. Henderson</name>
</json:item>
<json:item>
<name>C.G. Clough</name>
</json:item>
<json:item>
<name>R.C. Hughes</name>
</json:item>
<json:item>
<name>E.R. Hitchkock</name>
</json:item>
<json:item>
<name>B.G. Kenny</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>827</last>
<first>822</first>
</pages>
<author></author>
<title>Arch. Neurol.</title>
</host>
<title>Implantation of human ventral mesencephalon to the right caudate nucleus in advanced Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.P. Herman</name>
</json:item>
<json:item>
<name>N. Abrous</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>35</last>
<first>1</first>
</pages>
<author></author>
<title>Prog. Neurobio.</title>
</host>
<title>Dopaminergic neural grafts after fifteen years: Results and perspectives</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.F. Hickey</name>
</json:item>
<json:item>
<name>H. Kimura</name>
</json:item>
</author>
<host>
<volume>239</volume>
<pages>
<last>292</last>
<first>290</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.D. Hutchins</name>
</json:item>
<json:item>
<name>D.W. Dickson</name>
</json:item>
<json:item>
<name>W.K. Rashbaum</name>
</json:item>
<json:item>
<name>W.D. Lyman</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>102</last>
<first>95</first>
</pages>
<author></author>
<title>Dev. Brain Res.</title>
</host>
<title>Localization of morphologically distinct microglial populations in the developing human fetal brain: Implications for ontogeny</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.M. Innocenti</name>
</json:item>
<json:item>
<name>S. Clarke</name>
</json:item>
<json:item>
<name>H. Koppel</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>66</last>
<first>56</first>
</pages>
<author></author>
<title>Dev. Brain. Res.</title>
</host>
<title>Transitory macrophages in the white matter of the developping visual cortex. II: Development and relations with axonal pathways</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Jeny</name>
</json:item>
<json:item>
<name>M. Peschanski</name>
</json:item>
<json:item>
<name>E. Cynober</name>
</json:item>
<json:item>
<name>M. Kammoun</name>
</json:item>
<json:item>
<name>A. Bouzaghar</name>
</json:item>
<json:item>
<name>M. Hammani</name>
</json:item>
<json:item>
<name>P. Cesaro</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>20</last>
<first>19</first>
</pages>
<author></author>
<title>J. Echo. Med. Ultras.</title>
</host>
<title>Apport de l'échographie dans les prelevements embryonnaires a visée de greffes intracérébrales dans le traitement de la maladie de Parkinson</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>G. Sawle</name>
</json:item>
<json:item>
<name>H. Widner</name>
</json:item>
<json:item>
<name>J.C. Rothwell</name>
</json:item>
<json:item>
<name>A. Bjürklund</name>
</json:item>
<json:item>
<name>D. Brooks</name>
</json:item>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>R. Frackowiack</name>
</json:item>
<json:item>
<name>C.D. Marsden</name>
</json:item>
<json:item>
<name>P. Odin</name>
</json:item>
<json:item>
<name>S. Rehncrona</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>180</last>
<first>172</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>Evidence of long term survival and function of dopaminergic grafts in progressive Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>H. Widner</name>
</json:item>
<json:item>
<name>S. Rehncrona</name>
</json:item>
<json:item>
<name>B. Gustavii</name>
</json:item>
<json:item>
<name>R. Frackowiak</name>
</json:item>
<json:item>
<name>K.L. Leenders</name>
</json:item>
<json:item>
<name>G. Swale</name>
</json:item>
<json:item>
<name>J.C. Rothwell</name>
</json:item>
<json:item>
<name>C.D. Marsden</name>
</json:item>
</author>
<host>
<volume>247</volume>
<pages>
<last>577</last>
<first>574</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Grafts of fetal domapine neurons survive and improve motor function in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>H. Widner</name>
</json:item>
<json:item>
<name>S. Rehncrona</name>
</json:item>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>P. Odin</name>
</json:item>
<json:item>
<name>B. Gustavii</name>
</json:item>
<json:item>
<name>R. Frackowiack</name>
</json:item>
<json:item>
<name>K.L. Leenders</name>
</json:item>
<json:item>
<name>G. Sawle</name>
</json:item>
<json:item>
<name>J.C. Rothwell</name>
</json:item>
<json:item>
<name>A. Björklund</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>165</last>
<first>155</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>Transplantation of fetal dopamine neurons in Parkinson's disease: One-year clinical and neurophysiological observations in two patients with putaminal implants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.A. Ling</name>
</json:item>
<json:item>
<name>W.C. Wong</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>18</last>
<first>9</first>
</pages>
<author></author>
<title>Glia</title>
</host>
<title>The origin and nature of ramified and amoeboid microglia: A historical review and current concepts</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Lowe</name>
</json:item>
<json:item>
<name>K.A. MacLennan</name>
</json:item>
<json:item>
<name>D.G. Powe</name>
</json:item>
<json:item>
<name>J.D. Pound</name>
</json:item>
<json:item>
<name>J.B. Palmer</name>
</json:item>
</author>
<host>
<volume>159</volume>
<pages>
<last>149</last>
<first>143</first>
</pages>
<author></author>
<title>J. Pathol.</title>
</host>
<title>Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Marty</name>
</json:item>
<json:item>
<name>L. Dusart</name>
</json:item>
<json:item>
<name>M. Peschanski</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>539</last>
<first>529</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Glial changes following an excitotoxic lesion in the CNS -I. Microglial/Macrophages</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Developmental stages in human embryo</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>V.H. Perry</name>
</json:item>
<json:item>
<name>R.D. Lund</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>462</last>
<first>453</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Microglia in retinae transplanted to the central nervous system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Peschanski</name>
</json:item>
<json:item>
<name>O. Isacson</name>
</json:item>
</author>
<host>
<volume>274</volume>
<pages>
<last>463</last>
<first>449</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Fetal homotypic transplant in the excitotoxically neuron depleted thalamus: Light microscopy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Peschanski</name>
</json:item>
<json:item>
<name>G. Defer</name>
</json:item>
<json:item>
<name>J.P. N'guyen</name>
</json:item>
<json:item>
<name>F. Ricolfi</name>
</json:item>
<json:item>
<name>J.C. Monfort</name>
</json:item>
<json:item>
<name>P. Remy</name>
</json:item>
<json:item>
<name>C. Geny</name>
</json:item>
<json:item>
<name>Y. Samson</name>
</json:item>
<json:item>
<name>Ph. Hantraye</name>
</json:item>
<json:item>
<name>R. Jeny</name>
</json:item>
<json:item>
<name>A. Gaston</name>
</json:item>
<json:item>
<name>Y. Kéravel</name>
</json:item>
<json:item>
<name>J.D. Degos</name>
</json:item>
<json:item>
<name>P. Cesaro</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>499</last>
<first>487</first>
</pages>
<author></author>
<title>Brain</title>
</host>
<title>Bilateral motor improvement and alteration of l-DOPA effect in two patients with Parkinson's disease following intrastriatal transplantation of fetal ventral mesencephalon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Peudenier</name>
</json:item>
<json:item>
<name>C. Hery</name>
</json:item>
<json:item>
<name>K.H. Ng</name>
</json:item>
<json:item>
<name>M. Tardieu</name>
</json:item>
</author>
<host>
<volume>142</volume>
<pages>
<last>149</last>
<first>145</first>
</pages>
<author></author>
<title>Res. Virol.</title>
</host>
<title>HIV receptors within the brain, a study of CD4 and MHC-II on human neurons, astrocytes and microglial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Poltorak</name>
</json:item>
<json:item>
<name>W.J. Freed</name>
</json:item>
</author>
<host>
<volume>103</volume>
<pages>
<last>233</last>
<first>222</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Immunological reactions induced by intracerebral transplantation: Evidence that host microglia but not astroglia are the antigen-presenting cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.S. Sohal</name>
</json:item>
<json:item>
<name>T.A. Weidman</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>64</last>
<first>53</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Ultrastructure and sequence of embryonic cell death in normal and peripherally deprived trochlear nucleus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.D. Spencer</name>
</json:item>
<json:item>
<name>R.J. Robbins</name>
</json:item>
<json:item>
<name>F. Naftolin</name>
</json:item>
<json:item>
<name>K.L. Marek</name>
</json:item>
<json:item>
<name>T. Vollmer</name>
</json:item>
<json:item>
<name>C. Leranth</name>
</json:item>
<json:item>
<name>R.H. Roth</name>
</json:item>
<json:item>
<name>L.H. Price</name>
</json:item>
<json:item>
<name>A. Gjedde</name>
</json:item>
<json:item>
<name>B.S. Benney</name>
</json:item>
<json:item>
<name>K.J. Sass</name>
</json:item>
<json:item>
<name>J.D. Elsworth</name>
</json:item>
<json:item>
<name>E. Keon Kier</name>
</json:item>
<json:item>
<name>R. Makuch</name>
</json:item>
<json:item>
<name>P.B. Hoffer</name>
</json:item>
<json:item>
<name>D.E. Redmond</name>
</json:item>
</author>
<host>
<volume>327</volume>
<pages>
<last>1548</last>
<first>1541</first>
</pages>
<author></author>
<title>N. Engl. J. Med.</title>
</host>
<title>Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Strömberg</name>
</json:item>
<json:item>
<name>M. Bygdeman</name>
</json:item>
<json:item>
<name>M. Goldstein</name>
</json:item>
<json:item>
<name>A. Seiger</name>
</json:item>
<json:item>
<name>L. Olson</name>
</json:item>
</author>
<host>
<volume>71</volume>
<pages>
<last>276</last>
<first>271</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: Evidence for functional reinnervation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Wictorin</name>
</json:item>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>B. Gustavii</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>A. Björklund</name>
</json:item>
</author>
<host>
<volume>347</volume>
<pages>
<last>558</last>
<first>556</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Widner</name>
</json:item>
<json:item>
<name>J. Tetrud</name>
</json:item>
<json:item>
<name>S. Rehncrona</name>
</json:item>
<json:item>
<name>B. Snow</name>
</json:item>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>G. Gustavii</name>
</json:item>
<json:item>
<name>A. Björklund</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
<json:item>
<name>W. Langston</name>
</json:item>
</author>
<host>
<volume>327</volume>
<pages>
<last>1563</last>
<first>1556</first>
</pages>
<author></author>
<title>N. Engl. J. Med.</title>
</host>
<title>Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>38</volume>
<pii>
<json:string>S0361-9230(00)X0012-3</json:string>
</pii>
<pages>
<last>391</last>
<first>383</first>
</pages>
<issn>
<json:string>0361-9230</json:string>
</issn>
<issue>4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Brain Research Bulletin</title>
<publicationDate>1995</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1016/0361-9230(95)02004-B</json:string>
</doi>
<id>D27D781C361F765B4658487FA0CE56C8BB8F70F7</id>
<score>0.15726715</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D27D781C361F765B4658487FA0CE56C8BB8F70F7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D27D781C361F765B4658487FA0CE56C8BB8F70F7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D27D781C361F765B4658487FA0CE56C8BB8F70F7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Microglial chimaerism in human xenografts to the rat brain</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1995</date>
</publicationStmt>
<notesStmt>
<note>This article is being published without the benefit of the author's review pf the proofs, which were not available at press time.</note>
<note type="content">Section title: Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Microglial chimaerism in human xenografts to the rat brain</title>
<author xml:id="author-1">
<persName>
<forename type="first">Christian</forename>
<surname>Geny</surname>
</persName>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Souad</forename>
<surname>Naimi-Sadaoui</surname>
</persName>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
<affiliation>Laboratoire de Neurosciences. Département de Biologie, Faculté des Sciences Semlalia-Marrakech, Morocco</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Abd El Madjid</forename>
<surname>Belkadi</surname>
</persName>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Roland</forename>
<surname>Jeny</surname>
</persName>
<affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Mourad</forename>
<surname>Kammoun</surname>
</persName>
<affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Marc</forename>
<surname>Peschanski</surname>
</persName>
<affiliation>To whom requests for reprints should be addressed.</affiliation>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Brain Research Bulletin</title>
<title level="j" type="abbrev">BRB</title>
<idno type="pISSN">0361-9230</idno>
<idno type="PII">S0361-9230(00)X0012-3</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1995"></date>
<biblScope unit="volume">38</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="383">383</biblScope>
<biblScope unit="page" to="391">391</biblScope>
</imprint>
</monogr>
<idno type="istex">D27D781C361F765B4658487FA0CE56C8BB8F70F7</idno>
<idno type="DOI">10.1016/0361-9230(95)02004-B</idno>
<idno type="PII">0361-9230(95)02004-B</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Neural tissue from human fetuses is currently used for intracerebral transplantation to treat patients with Parkinson's disease. The development of the human fetal tissue following grafting has been considered mostly, up to now, from the neuronal point of view in xenografts. Very little is known, in contrast, about nonneuronal, filial, or vascular cells in the grafts. Comparison of the data gathered on the development of grafted human neurons with those obtained in comparable studies using rat transplants has demonstrated species-specific features. We have therefore undertaken a series of studies dealing with non-neuronal cells in human-to-rat transplants to reveal other possible species-specificity of the human tissue. This study has, accordingly, been devoted to the immunohistochemical analysis of microglia of host and donor origins in a human to rat xenograft paradigm allowing clear distinction of the origin of the cells. Human neural tissue was transplanted as a cell suspension into the thalamus of adult rats. Amoeboid human microglia were observed in 1-, 2-, and 3-month-old transplants, but their density, already relatively low at the first stage, decreased further over time. Ramified human microglia were only occasional. In sharp contrast, host rat microglia rapidly invaded the transplant in the absence of any sign of necrosis. The rat cells exhibited first an amoeboid morphology but progressed at the later stages toward a more mature, ramified morphology. These results indicate that donor microglia are quite few in number at first and, at least, do not proliferate actively after transplantation. They seem rather to disappear over time. The parallel migration of a large number of host microglia into the transplant and the apparent maturation of these cells lead to the formation of a cellular chimaera. Extrapolation of these results to clinical neural grafting suggests that most, if not all, microglia in fetal transplants may rapidly be of host origin in patients.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Human microglia</term>
</item>
<item>
<term>Immunchistochemistry</term>
</item>
<item>
<term>Brain transplantation</term>
</item>
<item>
<term>Parkinson's disease</term>
</item>
<item>
<term>Human fetus</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1995-06-03">Modified</change>
<change when="1995">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D27D781C361F765B4658487FA0CE56C8BB8F70F7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>BRB</jid>
<aid>9502004B</aid>
<ce:pii>0361-9230(95)02004-B</ce:pii>
<ce:doi>10.1016/0361-9230(95)02004-B</ce:doi>
<ce:copyright type="unknown" year="1995"></ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>This article is being published without the benefit of the author's review pf the proofs, which were not available at press time.</ce:note-para>
</ce:article-footnote>
<ce:dochead>
<ce:textfn>Article</ce:textfn>
</ce:dochead>
<ce:title>Microglial chimaerism in human xenografts to the rat brain</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Christian</ce:given-name>
<ce:surname>Geny</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Souad</ce:given-name>
<ce:surname>Naimi-Sadaoui</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF3">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Abd El Madjid</ce:given-name>
<ce:surname>Belkadi</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Roland</ce:given-name>
<ce:surname>Jeny</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Mourad</ce:given-name>
<ce:surname>Kammoun</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Marc</ce:given-name>
<ce:surname>Peschanski</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label></ce:label>
<ce:textfn>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label></ce:label>
<ce:textfn>Hǒpital Esquirol, 94410 Saint-Maurice, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label></ce:label>
<ce:textfn>Laboratoire de Neurosciences. Département de Biologie, Faculté des Sciences Semlalia-Marrakech, Morocco</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>1</ce:label>
<ce:text>To whom requests for reprints should be addressed.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="24" month="3" year="1995"></ce:date-received>
<ce:date-revised day="3" month="6" year="1995"></ce:date-revised>
<ce:date-accepted day="5" month="6" year="1995"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Neural tissue from human fetuses is currently used for intracerebral transplantation to treat patients with Parkinson's disease. The development of the human fetal tissue following grafting has been considered mostly, up to now, from the neuronal point of view in xenografts. Very little is known, in contrast, about nonneuronal, filial, or vascular cells in the grafts. Comparison of the data gathered on the development of grafted human neurons with those obtained in comparable studies using rat transplants has demonstrated species-specific features. We have therefore undertaken a series of studies dealing with non-neuronal cells in human-to-rat transplants to reveal other possible species-specificity of the human tissue. This study has, accordingly, been devoted to the immunohistochemical analysis of microglia of host and donor origins in a human to rat xenograft paradigm allowing clear distinction of the origin of the cells. Human neural tissue was transplanted as a cell suspension into the thalamus of adult rats. Amoeboid human microglia were observed in 1-, 2-, and 3-month-old transplants, but their density, already relatively low at the first stage, decreased further over time. Ramified human microglia were only occasional. In sharp contrast, host rat microglia rapidly invaded the transplant in the absence of any sign of necrosis. The rat cells exhibited first an amoeboid morphology but progressed at the later stages toward a more mature, ramified morphology. These results indicate that donor microglia are quite few in number at first and, at least, do not proliferate actively after transplantation. They seem rather to disappear over time. The parallel migration of a large number of host microglia into the transplant and the apparent maturation of these cells lead to the formation of a cellular chimaera. Extrapolation of these results to clinical neural grafting suggests that most, if not all, microglia in fetal transplants may rapidly be of host origin in patients.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Human microglia</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Immunchistochemistry</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Brain transplantation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Parkinson's disease</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Human fetus</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Microglial chimaerism in human xenografts to the rat brain</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Microglial chimaerism in human xenografts to the rat brain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Geny</namePart>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Souad</namePart>
<namePart type="family">Naimi-Sadaoui</namePart>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
<affiliation>Laboratoire de Neurosciences. Département de Biologie, Faculté des Sciences Semlalia-Marrakech, Morocco</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abd El Madjid</namePart>
<namePart type="family">Belkadi</namePart>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roland</namePart>
<namePart type="family">Jeny</namePart>
<affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mourad</namePart>
<namePart type="family">Kammoun</namePart>
<affiliation>Hǒpital Esquirol, 94410 Saint-Maurice, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Peschanski</namePart>
<affiliation>To whom requests for reprints should be addressed.</affiliation>
<affiliation>INSERM U 421, Neuroplasticité et Thérapeutique, Faculté de Médecine, 8 rue général Sarrail, 94010 Créteil Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1995</dateIssued>
<dateModified encoding="w3cdtf">1995-06-03</dateModified>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Neural tissue from human fetuses is currently used for intracerebral transplantation to treat patients with Parkinson's disease. The development of the human fetal tissue following grafting has been considered mostly, up to now, from the neuronal point of view in xenografts. Very little is known, in contrast, about nonneuronal, filial, or vascular cells in the grafts. Comparison of the data gathered on the development of grafted human neurons with those obtained in comparable studies using rat transplants has demonstrated species-specific features. We have therefore undertaken a series of studies dealing with non-neuronal cells in human-to-rat transplants to reveal other possible species-specificity of the human tissue. This study has, accordingly, been devoted to the immunohistochemical analysis of microglia of host and donor origins in a human to rat xenograft paradigm allowing clear distinction of the origin of the cells. Human neural tissue was transplanted as a cell suspension into the thalamus of adult rats. Amoeboid human microglia were observed in 1-, 2-, and 3-month-old transplants, but their density, already relatively low at the first stage, decreased further over time. Ramified human microglia were only occasional. In sharp contrast, host rat microglia rapidly invaded the transplant in the absence of any sign of necrosis. The rat cells exhibited first an amoeboid morphology but progressed at the later stages toward a more mature, ramified morphology. These results indicate that donor microglia are quite few in number at first and, at least, do not proliferate actively after transplantation. They seem rather to disappear over time. The parallel migration of a large number of host microglia into the transplant and the apparent maturation of these cells lead to the formation of a cellular chimaera. Extrapolation of these results to clinical neural grafting suggests that most, if not all, microglia in fetal transplants may rapidly be of host origin in patients.</abstract>
<note>This article is being published without the benefit of the author's review pf the proofs, which were not available at press time.</note>
<note type="content">Section title: Article</note>
<subject>
<genre>Keywords</genre>
<topic>Human microglia</topic>
<topic>Immunchistochemistry</topic>
<topic>Brain transplantation</topic>
<topic>Parkinson's disease</topic>
<topic>Human fetus</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Brain Research Bulletin</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>BRB</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">1995</dateIssued>
</originInfo>
<identifier type="ISSN">0361-9230</identifier>
<identifier type="PII">S0361-9230(00)X0012-3</identifier>
<part>
<date>1995</date>
<detail type="volume">
<number>38</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>307</start>
<end>409</end>
</extent>
<extent unit="pages">
<start>383</start>
<end>391</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D27D781C361F765B4658487FA0CE56C8BB8F70F7</identifier>
<identifier type="DOI">10.1016/0361-9230(95)02004-B</identifier>
<identifier type="PII">0361-9230(95)02004-B</identifier>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001878 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001878 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D27D781C361F765B4658487FA0CE56C8BB8F70F7
   |texte=   Microglial chimaerism in human xenografts to the rat brain
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024