La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adult neurogenesis and functional plasticity in neuronal circuits

Identifieur interne : 001360 ( Istex/Corpus ); précédent : 001359; suivant : 001361

Adult neurogenesis and functional plasticity in neuronal circuits

Auteurs : Pierre-Marie Lledo ; Mariana Alonso ; Matthew S. Grubb

Source :

RBID : ISTEX:100627B78B6051122503EC2CC766162DB007969A

Abstract

The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain the olfactory bulb and the dentate gyrus new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.

Url:
DOI: 10.1038/nrn1867

Links to Exploration step

ISTEX:100627B78B6051122503EC2CC766162DB007969A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adult neurogenesis and functional plasticity in neuronal circuits</title>
<author>
<name sortKey="Lledo, Pierre Marie" sort="Lledo, Pierre Marie" uniqKey="Lledo P" first="Pierre-Marie" last="Lledo">Pierre-Marie Lledo</name>
<affiliation>
<mods:affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: pmlledo@pasteur.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alonso, Mariana" sort="Alonso, Mariana" uniqKey="Alonso M" first="Mariana" last="Alonso">Mariana Alonso</name>
<affiliation>
<mods:affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grubb, Matthew S" sort="Grubb, Matthew S" uniqKey="Grubb M" first="Matthew S." last="Grubb">Matthew S. Grubb</name>
<affiliation>
<mods:affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:100627B78B6051122503EC2CC766162DB007969A</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1038/nrn1867</idno>
<idno type="url">https://api.istex.fr/document/100627B78B6051122503EC2CC766162DB007969A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001360</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001360</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Adult neurogenesis and functional plasticity in neuronal circuits</title>
<author>
<name sortKey="Lledo, Pierre Marie" sort="Lledo, Pierre Marie" uniqKey="Lledo P" first="Pierre-Marie" last="Lledo">Pierre-Marie Lledo</name>
<affiliation>
<mods:affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: pmlledo@pasteur.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alonso, Mariana" sort="Alonso, Mariana" uniqKey="Alonso M" first="Mariana" last="Alonso">Mariana Alonso</name>
<affiliation>
<mods:affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grubb, Matthew S" sort="Grubb, Matthew S" uniqKey="Grubb M" first="Matthew S." last="Grubb">Matthew S. Grubb</name>
<affiliation>
<mods:affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Nature Reviews Neuroscience</title>
<idno type="ISSN">1471-003X</idno>
<idno type="eISSN">1471-0048</idno>
<imprint>
<publisher>Nature Publishing Group</publisher>
<date type="published" when="2006-03">2006-03</date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="179">179</biblScope>
<biblScope unit="page" to="193">193</biblScope>
</imprint>
<idno type="ISSN">1471-003X</idno>
</series>
<idno type="istex">100627B78B6051122503EC2CC766162DB007969A</idno>
<idno type="DOI">10.1038/nrn1867</idno>
<idno type="ArticleID">nrn1867</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1471-003X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="eng">The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain the olfactory bulb and the dentate gyrus new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.</div>
</front>
</TEI>
<istex>
<corpusName>nature</corpusName>
<author>
<json:item>
<name>Pierre-Marie Lledo</name>
<affiliations>
<json:string>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</json:string>
<json:string>E-mail: pmlledo@pasteur.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mariana Alonso</name>
<affiliations>
<json:string>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Matthew S. Grubb</name>
<affiliations>
<json:string>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>nrn1867</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Review</json:string>
</originalGenre>
<abstract>The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain the olfactory bulb and the dentate gyrus new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.</abstract>
<qualityIndicators>
<score>6.796</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>676</abstractCharCount>
<pdfWordCount>14037</pdfWordCount>
<pdfCharCount>95095</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>108</abstractWordCount>
</qualityIndicators>
<title>Adult neurogenesis and functional plasticity in neuronal circuits</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>S. Harzsch</name>
</json:item>
<json:item>
<name>R. R. Dawirs</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>398</last>
<first>384</first>
</pages>
<author></author>
<title>J. Neurobiol.</title>
</host>
<title>Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. Goldman</name>
</json:item>
<json:item>
<name>F. Nottebohm</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>2394</last>
<first>2390</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Altman</name>
</json:item>
<json:item>
<name>G. D. Das</name>
</json:item>
</author>
<host>
<volume>207</volume>
<pages>
<last>956</last>
<first>953</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Post-natal origin of microneurones in the rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Gould</name>
</json:item>
<json:item>
<name>A. J. Reeves</name>
</json:item>
<json:item>
<name>M. S. Graziano</name>
</json:item>
<json:item>
<name>C. G. Gross</name>
</json:item>
</author>
<host>
<volume>286</volume>
<pages>
<last>552</last>
<first>548</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Neurogenesis in the neocortex of adult primates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. R. Kornack</name>
</json:item>
<json:item>
<name>P. Rakic</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>5773</last>
<first>5768</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Continuation of neurogenesis in the hippocampus of the adult macaque monkey</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. S. Eriksson</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>1317</last>
<first>1313</first>
</pages>
<author></author>
<title>Nature Med.</title>
</host>
<title>Neurogenesis in the adult human hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Kempermann</name>
</json:item>
<json:item>
<name>L. Wiskott</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>191</last>
<first>186</first>
</pages>
<author></author>
<title>Curr. Opin. Neurobiol.</title>
</host>
<title>Functional significance of adult neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Rakic</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>618</last>
<first>614</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Adult neurogenesis in mammals, an identity crisis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
<json:item>
<name>J. M. Garcia-Verdugo</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>634</last>
<first>629</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Neurogenesis in adult subventricular zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. D. Palmer</name>
</json:item>
<json:item>
<name>J. Ray</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>486</last>
<first>474</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Weiss</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>7609</last>
<first>7599</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Tropepe</name>
</json:item>
</author>
<host>
<volume>287</volume>
<pages>
<last>2036</last>
<first>2032</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Retinal stem cells in the adult mammalian eye</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. J. Bernier</name>
</json:item>
<json:item>
<name>A. Bedard</name>
</json:item>
<json:item>
<name>J. Vinet</name>
</json:item>
<json:item>
<name>M. Levesque</name>
</json:item>
<json:item>
<name>A. Parent</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>11469</last>
<first>11464</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Newly generated neurons in the amygdala and adjoining cortex of adult primates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Gritti</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>445</last>
<first>437</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Multipotent neural stem cells reside into the rostral extension and OB of adult rodents</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Zhao</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>7930</last>
<first>7925</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Evidence for neurogenesis in the adult mammalian substantia nigra</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Kokoeva</name>
</json:item>
<json:item>
<name>H. Yin</name>
</json:item>
<json:item>
<name>J. S. Flier</name>
</json:item>
</author>
<host>
<volume>310</volume>
<pages>
<last>683</last>
<first>679</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Neurogenesis in the hypothalamus of adult mice: potential role in energy balance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Bauer</name>
</json:item>
<json:item>
<name>M. Hay</name>
</json:item>
<json:item>
<name>B. Amilhon</name>
</json:item>
<json:item>
<name>A. Jean</name>
</json:item>
<json:item>
<name>E. Moyse</name>
</json:item>
</author>
<host>
<volume>130</volume>
<pages>
<last>90</last>
<first>75</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>In vivo neurogenesis in the dorsal vagal complex of the adult rat brainstem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. R. Kornack</name>
</json:item>
<json:item>
<name>P. Rakic</name>
</json:item>
</author>
<host>
<volume>294</volume>
<pages>
<last>2130</last>
<first>2127</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Cell proliferation without neurogenesis in adult primate neocortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. C. Lie</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>6649</last>
<first>6639</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>The adult substantia nigra contains progenitor cells with neurogenic potential</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Koketsu</name>
</json:item>
<json:item>
<name>A. Mikami</name>
</json:item>
<json:item>
<name>Y. Miyamoto</name>
</json:item>
<json:item>
<name>T. Hisatsune</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>942</last>
<first>937</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Frielingsdorf</name>
</json:item>
<json:item>
<name>K. Schwarz</name>
</json:item>
<json:item>
<name>P. Brundin</name>
</json:item>
<json:item>
<name>P. Mohapel</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>10182</last>
<first>10177</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>No evidence for new dopaminergic neurons in the adult mammalian substantia nigra</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Doetsch</name>
</json:item>
<json:item>
<name>I. Caill</name>
</json:item>
<json:item>
<name>D. A. Lim</name>
</json:item>
<json:item>
<name>J. M. Garcia-Verdugo</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>716</last>
<first>703</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>Subventricular zone astrocytes are neural stem cells in the adult mammalian brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. D. Laywell</name>
</json:item>
<json:item>
<name>P. Rakic</name>
</json:item>
<json:item>
<name>V. G. Kukekov</name>
</json:item>
<json:item>
<name>E. C. Holland</name>
</json:item>
<json:item>
<name>D. A. Steindler</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>13888</last>
<first>13883</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. D. Garcia</name>
</json:item>
<json:item>
<name>N. B. Doan</name>
</json:item>
<json:item>
<name>T. Imura</name>
</json:item>
<json:item>
<name>T. G. Bush</name>
</json:item>
<json:item>
<name>M. V. Sofroniew</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>1241</last>
<first>1233</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
<json:item>
<name>J. M. Garcia-Verdugo</name>
</json:item>
<json:item>
<name>A. D. Tramontin</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>293</last>
<first>287</first>
</pages>
<author></author>
<title>Nature Rev. Neurosci.</title>
</host>
<title>A unified hypothesis on the lineage of neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Lois</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
</author>
<host>
<volume>264</volume>
<pages>
<last>1148</last>
<first>1145</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Long-distance neuronal migration in the adult mammalian brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Jankovski</name>
</json:item>
<json:item>
<name>C. Sotelo</name>
</json:item>
</author>
<host>
<volume>371</volume>
<pages>
<last>396</last>
<first>376</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Subventricular zoneolfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. A. Cameron</name>
</json:item>
<json:item>
<name>R. D. McKay</name>
</json:item>
</author>
<host>
<volume>435</volume>
<pages>
<last>417</last>
<first>406</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Adult neurogenesis produces a large pool of new granule cells in the DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. G. Kuhn</name>
</json:item>
<json:item>
<name>H. Dickinson-Anson</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>2033</last>
<first>2027</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Neurogenesis in the DG of the adult rat: age-related decrease of neuronal progenitor proliferation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. B. Stanfield</name>
</json:item>
<json:item>
<name>J. E. Trice</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>406</last>
<first>399</first>
</pages>
<author></author>
<title>Exp. Brain Res.</title>
</host>
<title>Evidence that granule cells generated in the DG of adult rats extend axonal projections</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. A. Markakis</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>406</volume>
<pages>
<last>460</last>
<first>449</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Adult-generated neurons in the DG send axonal projections to field CA3 and are surrounded by synaptic vesicles</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Doetsch</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>1134</last>
<first>1127</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>The glial identity of neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
<json:item>
<name>D. A. Lim</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>686</last>
<first>683</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>For the long run: maintaining germinal niches in the adult brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. L. Ming</name>
</json:item>
<json:item>
<name>H. Song</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>250</last>
<first>223</first>
</pages>
<author></author>
<title>Annu. Rev. Neurosci.</title>
</host>
<title>Adult neurogenesis in the mammalian central nervous system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Zhao</name>
</json:item>
<json:item>
<name>E. M. Teng</name>
</json:item>
<json:item>
<name>R. G. SummersJr</name>
</json:item>
<json:item>
<name>G. -L. Ming</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>11</last>
<first>3</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Seki</name>
</json:item>
<json:item>
<name>Y. Arai</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>2358</last>
<first>2351</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the DG of the adult rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. D. Brandt</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>613</last>
<first>603</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Seri</name>
</json:item>
<json:item>
<name>J. M. Garcia-Verdugo</name>
</json:item>
<json:item>
<name>L. Collado-Morente</name>
</json:item>
<json:item>
<name>B. S. McEwen</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
</author>
<host>
<volume>478</volume>
<pages>
<last>378</last>
<first>359</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Cell types, lineage, and architecture of the germinal zone in the adult DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. P. Wang</name>
</json:item>
<json:item>
<name>G. Kempermann</name>
</json:item>
<json:item>
<name>H. Kettenmann</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>189</last>
<first>181</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>A subpopulation of precursor cells in the mouse DG receives synaptic GABAergic input</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Tozuka</name>
</json:item>
<json:item>
<name>S. Fukuda</name>
</json:item>
<json:item>
<name>T. Namba</name>
</json:item>
<json:item>
<name>T. Seki</name>
</json:item>
<json:item>
<name>T. Hisatsune</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>815</last>
<first>803</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Ben-Ari</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>739</last>
<first>728</first>
</pages>
<author></author>
<title>Nature Rev. Neurosci.</title>
</host>
<title>Excitatory actions of GABA during development: the nature of the nurture</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Deisseroth</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>552</last>
<first>535</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Excitationneurogenesis coupling in adult neural stem/progenitor cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>X. Liu</name>
</json:item>
<json:item>
<name>Q. Wang</name>
</json:item>
<json:item>
<name>T. F. Haydar</name>
</json:item>
<json:item>
<name>A. Bordey</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>1187</last>
<first>1179</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. S. Overstreet</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>3259</last>
<first>3251</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>A transgenic marker for newly born granule cells in DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. S. Overstreet-Wadiche</name>
</json:item>
<json:item>
<name>D. A. Bromberg</name>
</json:item>
<json:item>
<name>A. L. Bensen</name>
</json:item>
<json:item>
<name>G. L. Westbrook</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>4532</last>
<first>4528</first>
</pages>
<author></author>
<title>J. Neurophysiol.</title>
</host>
<title>GABAergic signaling to newborn neurons in DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. S. Espsito</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>10086</last>
<first>10074</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Neuronal differentiation in the adult hippocampus recapitulates embryonic development</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. van Praag</name>
</json:item>
</author>
<host>
<volume>415</volume>
<pages>
<last>1034</last>
<first>1030</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Functional neurogenesis in the adult hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Wang</name>
</json:item>
<json:item>
<name>B. W. Scott</name>
</json:item>
<json:item>
<name>J. M. Wojtowicz</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>257</last>
<first>248</first>
</pages>
<author></author>
<title>J. Neurobiol.</title>
</host>
<title>Heterogenous properties of dentate granule neurons in the adult rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. S. Snyder</name>
</json:item>
<json:item>
<name>N. Kee</name>
</json:item>
<json:item>
<name>J. M. Wojtowicz</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>2431</last>
<first>2423</first>
</pages>
<author></author>
<title>J. Neurophysiol.</title>
</host>
<title>Effects of adult neurogenesis on synaptic plasticity in the rat DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Schmidt-Hieber</name>
</json:item>
<json:item>
<name>P. Jonas</name>
</json:item>
<json:item>
<name>J. Bischofberger</name>
</json:item>
</author>
<host>
<volume>429</volume>
<pages>
<last>187</last>
<first>184</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Soares</name>
</json:item>
<json:item>
<name>C. Sotelo</name>
</json:item>
</author>
<host>
<volume>128</volume>
<pages>
<last>817</last>
<first>807</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Raineteau</name>
</json:item>
<json:item>
<name>L. Rietschin</name>
</json:item>
<json:item>
<name>G. Gradwohl</name>
</json:item>
<json:item>
<name>F. Guillemot</name>
</json:item>
<json:item>
<name>B. H. Gahwiler</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>250</last>
<first>241</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>Neurogenesis in hippocampal slice cultures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Kamada</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>2508</last>
<first>2499</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Liu</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>736</last>
<first>732</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Generation of functional inhibitory neurons in the adult rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Gutierrez</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>5598</last>
<first>5594</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Plasticity of the GABAergic phenotype of the 'glutamatergic' granule cells of the rat DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Petreanu</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>6113</last>
<first>6106</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Maturation and death of adult-born OB granule neurons: role of olfaction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Belluzzi</name>
</json:item>
<json:item>
<name>M. Benedusi</name>
</json:item>
<json:item>
<name>J. Ackman</name>
</json:item>
<json:item>
<name>J. J. LoTurco</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>10418</last>
<first>10411</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Electrophysiological differentiation of new neurons in the OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Carleton</name>
</json:item>
<json:item>
<name>L. T. Petreanu</name>
</json:item>
<json:item>
<name>R. Lansford</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
<json:item>
<name>P. -M. Lledo</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>518</last>
<first>507</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Becoming a new neuron in the adult OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Winner</name>
</json:item>
<json:item>
<name>C. M. Cooper-Kuhn</name>
</json:item>
<json:item>
<name>R. Aigner</name>
</json:item>
<json:item>
<name>J. Winkler</name>
</json:item>
<json:item>
<name>H. G. Kuhn</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>1689</last>
<first>1681</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Long-term survival and cell death of newly generated neurons in the adult rat OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Q. Shen</name>
</json:item>
</author>
<host>
<volume>304</volume>
<pages>
<last>1340</last>
<first>1338</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Song</name>
</json:item>
<json:item>
<name>C. F. Stevens</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>417</volume>
<pages>
<last>44</last>
<first>39</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Astroglia induce neurogenesis from adult neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. E. Wurmser</name>
</json:item>
</author>
<host>
<volume>430</volume>
<pages>
<last>356</last>
<first>350</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Cell fusion-independent differentiation of neural stem cells to the endothelial lineage</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Yoshikawa</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>14</last>
<first>1</first>
</pages>
<author></author>
<title>Neurosci. Res.</title>
</host>
<title>Cell cycle regulators in neural stem cells and postmitotic neurons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Cooper-Kuhn</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>323</last>
<first>312</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>Impaired adult neurogenesis in mice lacking the transcription factor E2F1</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. C. Conover</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>1097</last>
<first>1091</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Holmberg</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>471</last>
<first>462</first>
</pages>
<author></author>
<title>Genes Dev.</title>
</host>
<title>Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. P. McMahon</name>
</json:item>
<json:item>
<name>P. W. Ingham</name>
</json:item>
<json:item>
<name>C. J. Tabin</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>114</last>
<first>1</first>
</pages>
<author></author>
<title>Curr. Top. Dev. Biol.</title>
</host>
<title>Developmental roles and clinical significance of hedgehog signaling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Machold</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>950</last>
<first>937</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Lai</name>
</json:item>
<json:item>
<name>B. K. Kaspar</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
<json:item>
<name>D. V. Schaffer</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>27</last>
<first>21</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. C. Lie</name>
</json:item>
</author>
<host>
<volume>437</volume>
<pages>
<last>1375</last>
<first>1370</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Wnt signalling regulates adult hippocampal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. C. Amoureux</name>
</json:item>
<json:item>
<name>B. A. Cunningham</name>
</json:item>
<json:item>
<name>G. M. Edelman</name>
</json:item>
<json:item>
<name>K. L. Crossin</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>3640</last>
<first>3631</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Belvindrah</name>
</json:item>
<json:item>
<name>G. Rougon</name>
</json:item>
<json:item>
<name>G. Chazal</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>3607</last>
<first>3594</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Increased neurogenesis in adult mCD24-deficient mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. Caill</name>
</json:item>
</author>
<host>
<volume>131</volume>
<pages>
<last>2181</last>
<first>2173</first>
</pages>
<author></author>
<title>Development</title>
</host>
<title>Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Lim</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>726</last>
<first>713</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Noggin antagonizes BMP signaling to create a niche for adult neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Ueki</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>11740</last>
<first>11732</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>X. T. Fan</name>
</json:item>
<json:item>
<name>H. W. Xu</name>
</json:item>
<json:item>
<name>W. Q. Cai</name>
</json:item>
<json:item>
<name>H. Yang</name>
</json:item>
<json:item>
<name>S. Liu</name>
</json:item>
</author>
<host>
<volume>366</volume>
<pages>
<last>111</last>
<first>107</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the DG of adult rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Hitoshi</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>1811</last>
<first>1806</first>
</pages>
<author></author>
<title>Genes Dev.</title>
</host>
<title>Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Grandbarbe</name>
</json:item>
</author>
<host>
<volume>130</volume>
<pages>
<last>1402</last>
<first>1391</first>
</pages>
<author></author>
<title>Development</title>
</host>
<title>DeltaNotch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. V. Molofsky</name>
</json:item>
</author>
<host>
<volume>425</volume>
<pages>
<last>967</last>
<first>962</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Shi</name>
</json:item>
</author>
<host>
<volume>427</volume>
<pages>
<last>83</last>
<first>78</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Expression and function of orphan nuclear receptor TLX in adult neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Hack</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>871</last>
<first>865</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Neuronal fate determinants of adult OB neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Kohwi</name>
</json:item>
<json:item>
<name>N. Osumi</name>
</json:item>
<json:item>
<name>J. L. Rubenstein</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>7003</last>
<first>6997</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Maekawa</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>1014</last>
<first>1001</first>
</pages>
<author></author>
<title>Genes Cells</title>
</host>
<title>Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Parras</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>4505</last>
<first>4495</first>
</pages>
<author></author>
<title>EMBO J.</title>
</host>
<title>Mash1 specifies neurons and oligodendrocytes in the postnatal brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. J. Bolteus</name>
</json:item>
<json:item>
<name>A. Bordey</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>7631</last>
<first>7623</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. N. Abrous</name>
</json:item>
<json:item>
<name>M. Koehl</name>
</json:item>
<json:item>
<name>M. Le Moal</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>569</last>
<first>523</first>
</pages>
<author></author>
<title>Physiol. Rev.</title>
</host>
<title>Adult neurogenesis: from precursors to network and physiology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. A. Cameron</name>
</json:item>
<json:item>
<name>B. S. McEwen</name>
</json:item>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>4692</last>
<first>4687</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Gould</name>
</json:item>
<json:item>
<name>B. S. McEwen</name>
</json:item>
<json:item>
<name>P. Tanapat</name>
</json:item>
<json:item>
<name>L. A. Galea</name>
</json:item>
<json:item>
<name>E. Fuchs</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>2498</last>
<first>2492</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Neurogenesis in the DG of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Bernabeu</name>
</json:item>
<json:item>
<name>F. R. Sharp</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>1680</last>
<first>1669</first>
</pages>
<author></author>
<title>J. Cereb. Blood Flow Metab.</title>
</host>
<title>NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Yoshimizu</name>
</json:item>
<json:item>
<name>S. Chaki</name>
</json:item>
</author>
<host>
<volume>315</volume>
<pages>
<last>496</last>
<first>493</first>
</pages>
<author></author>
<title>Biochem. Biophys. Res. Commun.</title>
</host>
<title>Increased cell proliferation in the adult mouse hippocampus following chronic administration of group II metabotropic glutamate receptor antagonist, MGS0039</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Bai</name>
</json:item>
<json:item>
<name>M. Bergeron</name>
</json:item>
<json:item>
<name>D. L. Nelson</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>1021</last>
<first>1013</first>
</pages>
<author></author>
<title>Neuropharmacology</title>
</host>
<title>Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. R. Dawirs</name>
</json:item>
<json:item>
<name>K. Hildebrandt</name>
</json:item>
<json:item>
<name>G. Teuchert-Noodt</name>
</json:item>
</author>
<host>
<volume>105</volume>
<pages>
<last>327</last>
<first>317</first>
</pages>
<author></author>
<title>J. Neural. Transm.</title>
</host>
<title>Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Yamaguchi</name>
</json:item>
</author>
<host>
<volume>1025</volume>
<pages>
<last>362</last>
<first>351</first>
</pages>
<author></author>
<title>Ann. NY Acad. Sci.</title>
</host>
<title>Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. E. Kippin</name>
</json:item>
<json:item>
<name>S. Kapur</name>
</json:item>
<json:item>
<name>D. van der Kooy</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>5823</last>
<first>5815</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. Baker</name>
</json:item>
<json:item>
<name>K. A. Baker</name>
</json:item>
<json:item>
<name>T. Hagg</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>579</last>
<first>575</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. U. Hoglinger</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>735</last>
<first>726</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Dopamine depletion impairs precursor cell proliferation in Parkinson disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Banasr</name>
</json:item>
<json:item>
<name>M. Hery</name>
</json:item>
<json:item>
<name>R. Printemps</name>
</json:item>
<json:item>
<name>A. Daszuta</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>460</last>
<first>450</first>
</pages>
<author></author>
<title>Neuropsychopharmacology</title>
</host>
<title>Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the DG and the subventricular zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. J. Radley</name>
</json:item>
<json:item>
<name>B. L. Jacobs</name>
</json:item>
</author>
<host>
<volume>955</volume>
<pages>
<last>267</last>
<first>264</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>5-HT1A receptor antagonist administration decreases cell proliferation in the DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. M. Brezun</name>
</json:item>
<json:item>
<name>A. Daszuta</name>
</json:item>
</author>
<host>
<volume>89</volume>
<pages>
<last>1002</last>
<first>999</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Depletion in serotonin decreases neurogenesis in the DG and the subventricular zone of adult rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. E. Malberg</name>
</json:item>
<json:item>
<name>A. J. Eisch</name>
</json:item>
<json:item>
<name>E. J. Nestler</name>
</json:item>
<json:item>
<name>R. S. Duman</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>9110</last>
<first>9104</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Santarelli</name>
</json:item>
</author>
<host>
<volume>301</volume>
<pages>
<last>809</last>
<first>805</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Cooper-Kuhn</name>
</json:item>
<json:item>
<name>J. Winkler</name>
</json:item>
<json:item>
<name>H. G. Kuhn</name>
</json:item>
</author>
<host>
<volume>77</volume>
<pages>
<last>165</last>
<first>155</first>
</pages>
<author></author>
<title>J. Neurosci. Res.</title>
</host>
<title>Decreased neurogenesis after cholinergic forebrain lesion in the adult rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Mohapel</name>
</json:item>
<json:item>
<name>G. Leanza</name>
</json:item>
<json:item>
<name>M. Kokaia</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>946</last>
<first>939</first>
</pages>
<author></author>
<title>Neurobiol. Aging</title>
</host>
<title>Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Packer</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>9571</last>
<first>9566</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Nitric oxide negatively regulates mammalian adult neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Moreno-Lopez</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>95</last>
<first>85</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. J. Eisch</name>
</json:item>
<json:item>
<name>M. Barrot</name>
</json:item>
<json:item>
<name>C. A. Schad</name>
</json:item>
<json:item>
<name>D. W. Self</name>
</json:item>
<json:item>
<name>E. J. Nestler</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>7584</last>
<first>7579</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Opiates inhibit neurogenesis in the adult rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. I. Persson</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>1172</last>
<first>1159</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>- and -opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Rueda</name>
</json:item>
<json:item>
<name>B. Navarro</name>
</json:item>
<json:item>
<name>A. Martinez-Serrano</name>
</json:item>
<json:item>
<name>M. Guzman</name>
</json:item>
<json:item>
<name>I. Galve-Roperh</name>
</json:item>
</author>
<host>
<volume>277</volume>
<pages>
<last>46650</last>
<first>46645</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. G. Herrera</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>7924</last>
<first>7919</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Aberg</name>
</json:item>
<json:item>
<name>C. P. Hofstetter</name>
</json:item>
<json:item>
<name>L. Olson</name>
</json:item>
<json:item>
<name>S. Brene</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>567</last>
<first>557</first>
</pages>
<author></author>
<title>Int. J. Neuropsychopharmacol.</title>
</host>
<title>Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Jiang</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<last>3116</last>
<first>3104</first>
</pages>
<author></author>
<title>J. Clin. Invest.</title>
</host>
<title>Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Katoh-Semba</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>1330</last>
<first>1328</first>
</pages>
<author></author>
<title>FASEB J.</title>
</host>
<title>Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Zigova</name>
</json:item>
<json:item>
<name>V. Pencea</name>
</json:item>
<json:item>
<name>S. J. Wiegand</name>
</json:item>
<json:item>
<name>M. B. Luskin</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>245</last>
<first>234</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>Intraventricular administration of BDNF increases the number of newly generated neurons in the adult OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. G. Emsley</name>
</json:item>
<json:item>
<name>T. Hagg</name>
</json:item>
</author>
<host>
<volume>183</volume>
<pages>
<last>310</last>
<first>298</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Chojnacki</name>
</json:item>
<json:item>
<name>T. Shimazaki</name>
</json:item>
<json:item>
<name>C. Gregg</name>
</json:item>
<json:item>
<name>G. Weinmaster</name>
</json:item>
<json:item>
<name>S. Weiss</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>1741</last>
<first>1730</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Jin</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>183</last>
<first>175</first>
</pages>
<author></author>
<title>Aging Cell</title>
</host>
<title>Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Jin</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>409</last>
<first>405</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>Cerebral neurogenesis is induced by intranasal administration of growth factors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. G. Kuhn</name>
</json:item>
<json:item>
<name>J. Winkler</name>
</json:item>
<json:item>
<name>G. Kempermann</name>
</json:item>
<json:item>
<name>L. J. Thal</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>5829</last>
<first>5820</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Aberg</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>40</last>
<first>23</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>IGF-I has a direct proliferative effect in adult hippocampal progenitor cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. G. Craig</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>2658</last>
<first>2649</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Enwere</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>8365</last>
<first>8354</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Jin</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>11950</last>
<first>11946</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Greenberg</name>
</json:item>
<json:item>
<name>K. Jin</name>
</json:item>
</author>
<host>
<volume>438</volume>
<pages>
<last>959</last>
<first>954</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>From angiogenesis to neuropathology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Cao</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>835</last>
<first>827</first>
</pages>
<author></author>
<title>Nature Genet.</title>
</host>
<title>VEGF links hippocampal activity with neurogenesis, learning and memory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Consiglio</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>14840</last>
<first>14835</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. A. Cameron</name>
</json:item>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>209</last>
<first>203</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Adult neurogenesis is regulated by adrenal steroids in the DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Tanapat</name>
</json:item>
<json:item>
<name>N. B. Hastings</name>
</json:item>
<json:item>
<name>A. J. Reeves</name>
</json:item>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>5801</last>
<first>5792</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Estrogen stimulates a transient increase in the number of new neurons in the mk DG of the adult female rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. L. Coe</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>1034</last>
<first>1025</first>
</pages>
<author></author>
<title>Biol. Psychiatry</title>
</host>
<title>Prenatal stress diminishes neurogenesis in the DG of juvenile rhesus monkeys</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. F. Montaron</name>
</json:item>
</author>
<host>
<author></author>
<title>Neurobiol. Aging</title>
</host>
<title>Lifelong corticosterone level determines age-related decline in neurogenesis and memory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. J. Rodriguez</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>3006</last>
<first>2994</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Shingo</name>
</json:item>
</author>
<host>
<volume>299</volume>
<pages>
<last>120</last>
<first>117</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. F. Lemkine</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>865</last>
<first>863</first>
</pages>
<author></author>
<title>FASEB J.</title>
</host>
<title>Adult neural stem cell cycling in vivo requires thyroid hormone and its receptor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Mayo</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>114</last>
<first>103</first>
</pages>
<author></author>
<title>Neurobiol. Aging</title>
</host>
<title>Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. van Praag</name>
</json:item>
<json:item>
<name>B. R. Christie</name>
</json:item>
<json:item>
<name>T. J. Sejnowski</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>13431</last>
<first>13427</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Running enhances neurogenesis, learning, and long-term potentiation in mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Brown</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>2046</last>
<first>2042</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Enriched environment and physical activity stimulate hippocampal but not OB neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. Neeper</name>
</json:item>
<json:item>
<name>F. Gomez-Pinilla</name>
</json:item>
<json:item>
<name>J. Choi</name>
</json:item>
<json:item>
<name>C. Cotman</name>
</json:item>
</author>
<host>
<volume>373</volume>
<pages>
<first>109</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Exercise and brain neurotrophins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Kempermann</name>
</json:item>
<json:item>
<name>H. G. Kuhn</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>386</volume>
<pages>
<last>495</last>
<first>493</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>More hippocampal neurons in adult mice living in an enriched environment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Kempermann</name>
</json:item>
<json:item>
<name>E. P. Brandon</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>942</last>
<first>939</first>
</pages>
<author></author>
<title>Curr. Biol.</title>
</host>
<title>Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Mirescu</name>
</json:item>
<json:item>
<name>J. D. Peters</name>
</json:item>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>846</last>
<first>841</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Early life experience alters response of adult neurogenesis to stress</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kozorovitskiy</name>
</json:item>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>6759</last>
<first>6755</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Dominance hierarchy influences adult neurogenesis in the DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Guzman-Marin</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>2116</last>
<first>2111</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Bonfanti</name>
</json:item>
<json:item>
<name>D. T. Theodosis</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>305</last>
<first>291</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Cremer</name>
</json:item>
</author>
<host>
<volume>367</volume>
<pages>
<last>459</last>
<first>455</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Inactivation of the N-CAM gene in mice results in size reduction of the OB and deficits in spatial learning</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Wu</name>
</json:item>
</author>
<host>
<volume>400</volume>
<pages>
<last>336</last>
<first>331</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Directional guidance of neuronal migration in the olfactory system by the protein Slit</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. T. Nguyen-Ba-Charvet</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>1506</last>
<first>1497</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Multiple roles for slits in the control of cell migration in the rostral migratory stream</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. S. Anton</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>1328</last>
<first>1319</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. G. Emsley</name>
</json:item>
<json:item>
<name>T. Hagg</name>
</json:item>
</author>
<host>
<volume>183</volume>
<pages>
<last>285</last>
<first>273</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>6/1 integrin directs migration of neuronal precursors in adult mouse forebrain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Liu</name>
</json:item>
<json:item>
<name>Y. Rao</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>6659</last>
<first>6651</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Neuronal migration from the forebrain to the OB requires a new attractant persistent in the OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Kirschenbaum</name>
</json:item>
<json:item>
<name>F. Doetsch</name>
</json:item>
<json:item>
<name>C. Lois</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>2180</last>
<first>2171</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. Hack</name>
</json:item>
<json:item>
<name>M. Bancila</name>
</json:item>
<json:item>
<name>K. Loulier</name>
</json:item>
<json:item>
<name>P. Carroll</name>
</json:item>
<json:item>
<name>H. Cremer</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>945</last>
<first>939</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Saghatelyan</name>
</json:item>
<json:item>
<name>A. de Chevigny</name>
</json:item>
<json:item>
<name>M. Schachner</name>
</json:item>
<json:item>
<name>P. M. Lledo</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>356</last>
<first>347</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. L. Ng</name>
</json:item>
</author>
<host>
<volume>308</volume>
<pages>
<last>1927</last>
<first>1923</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Dependence of OB neurogenesis on prokineticin 2 signaling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. G. Dayer</name>
</json:item>
<json:item>
<name>A. A. Ford</name>
</json:item>
<json:item>
<name>K. M. Cleaver</name>
</json:item>
<json:item>
<name>M. Yassaee</name>
</json:item>
<json:item>
<name>H. A. Cameron</name>
</json:item>
</author>
<host>
<volume>460</volume>
<pages>
<last>572</last>
<first>563</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Short-term and long-term survival of new neurons in the rat DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Nilsson</name>
</json:item>
<json:item>
<name>E. Perfilieva</name>
</json:item>
<json:item>
<name>U. Johansson</name>
</json:item>
<json:item>
<name>O. Orwar</name>
</json:item>
<json:item>
<name>P. S. Eriksson</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>578</last>
<first>569</first>
</pages>
<author></author>
<title>J. Neurobiol.</title>
</host>
<title>Enriched environment increases neurogenesis in the adult rat DG and improves spatial memory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Leuner</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>7481</last>
<first>7477</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Mechawar</name>
</json:item>
<json:item>
<name>A. Saghatelyan</name>
</json:item>
<json:item>
<name>R. Grailhe</name>
</json:item>
<json:item>
<name>P. -M. Lledo</name>
</json:item>
<json:item>
<name>J. P. Changeux</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>9826</last>
<first>9822</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Nicotinic receptors regulate the survival of newborn neurons in the adult OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. S. Corotto</name>
</json:item>
<json:item>
<name>J. R. Henegar</name>
</json:item>
<json:item>
<name>J. A. Maruniak</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>744</last>
<first>739</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the OB of the adult mouse</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Rochefort</name>
</json:item>
<json:item>
<name>G. Gheusi</name>
</json:item>
<json:item>
<name>J. D. Vincent</name>
</json:item>
<json:item>
<name>P. -M. Lledo</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>2689</last>
<first>2679</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Enriched odor exposure increases the number of newborn neurons in the adult OB and improves odor memory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Saghatelyan</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>116</last>
<first>103</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Activity-dependent adjustments of the inhibitory network in the adult OB following early postnatal deprivation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Yamaguchi</name>
</json:item>
<json:item>
<name>K. Mori</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>9702</last>
<first>9697</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Miwa</name>
</json:item>
<json:item>
<name>D. R. Storm</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>5412</last>
<first>5404</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the OB promotes survival of newly formed granule cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Rochefort</name>
</json:item>
<json:item>
<name>P. M. Lledo</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>2870</last>
<first>2863</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Short-term survival of newborn neurons in the adult olfactory bulb after exposure to a complex odor environment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. G. Kuhn</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>1915</last>
<first>1907</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. S. P. Magavi</name>
</json:item>
<json:item>
<name>B. D. Mitchell</name>
</json:item>
<json:item>
<name>O. Szentirmai</name>
</json:item>
<json:item>
<name>J. D. Macklis</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>10739</last>
<first>10729</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Lemaire</name>
</json:item>
<json:item>
<name>C. Aurousseau</name>
</json:item>
<json:item>
<name>M. Le Moal</name>
</json:item>
<json:item>
<name>D. N. Abrous</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>4014</last>
<first>4006</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Drapeau</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>14390</last>
<first>14385</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Merrill</name>
</json:item>
<json:item>
<name>R. Karim</name>
</json:item>
<json:item>
<name>M. Darraq</name>
</json:item>
<json:item>
<name>A. A. Chiba</name>
</json:item>
<json:item>
<name>M. H. Tuszynski</name>
</json:item>
</author>
<host>
<volume>459</volume>
<pages>
<last>207</last>
<first>201</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Hippocampal cell genesis does not correlate with spatial learning ability in aged rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. D. Dobrossy</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>982</last>
<first>974</first>
</pages>
<author></author>
<title>Mol. Psychiatry</title>
</host>
<title>Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date</title>
</json:item>
<json:item>
<author>
<json:item>
<name>X. Zhao</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>6782</last>
<first>6777</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Kempermann</name>
</json:item>
<json:item>
<name>F. H. Gage</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>136</last>
<first>129</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Feng</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>926</last>
<first>911</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Gheusi</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>1828</last>
<first>1823</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Importance of newly generated neurons in the adult OB for odor discrimination</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. E. Gilbert</name>
</json:item>
<json:item>
<name>M. E. Kelly</name>
</json:item>
<json:item>
<name>T. E. Samsam</name>
</json:item>
<json:item>
<name>J. H. Goodman</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>374</last>
<first>365</first>
</pages>
<author></author>
<title>Toxicol. Sci.</title>
</host>
<title>Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Ueda</name>
</json:item>
<json:item>
<name>S. Sakakibara</name>
</json:item>
<json:item>
<name>K. Yoshimoto</name>
</json:item>
</author>
<host>
<volume>135</volume>
<pages>
<last>402</last>
<first>395</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. -M. Lledo</name>
</json:item>
<json:item>
<name>G. Gheusi</name>
</json:item>
<json:item>
<name>J. D. Vincent</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>317</last>
<first>281</first>
</pages>
<author></author>
<title>Physiol. Rev.</title>
</host>
<title>Information processing in the mammalian olfactory system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>265</last>
<first>260</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Learning enhances adult neurogenesis in the hippocampal formation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Ambrogini</name>
</json:item>
</author>
<host>
<volume>359</volume>
<pages>
<last>16</last>
<first>13</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Learning may reduce neurogenesis in adult rat DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. J. Shors</name>
</json:item>
</author>
<host>
<volume>410</volume>
<pages>
<last>376</last>
<first>372</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Neurogenesis in the adult is involved in the formation of trace memories</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. J. Shors</name>
</json:item>
<json:item>
<name>D. A. Townsend</name>
</json:item>
<json:item>
<name>M. Zhao</name>
</json:item>
<json:item>
<name>Y. Kozorovitskiy</name>
</json:item>
<json:item>
<name>E. Gould</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>584</last>
<first>578</first>
</pages>
<author></author>
<title>Hippocampus</title>
</host>
<title>Neurogenesis may relate to some but not all types of hippocampal-dependent learning</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. I. Moser</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>1259</last>
<first>1247</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Altered inhibition of dentate granule cells during spatial learning in an exploration task</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. S. Snyder</name>
</json:item>
<json:item>
<name>N. S. Hong</name>
</json:item>
<json:item>
<name>R. J. McDonald</name>
</json:item>
<json:item>
<name>J. M. Wojtowicz</name>
</json:item>
</author>
<host>
<volume>130</volume>
<pages>
<last>852</last>
<first>843</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>A role for adult neurogenesis in spatial long-term memory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Raber</name>
</json:item>
</author>
<host>
<volume>162</volume>
<pages>
<last>47</last>
<first>39</first>
</pages>
<author></author>
<title>Radiat. Res.</title>
</host>
<title>Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. L. Monje</name>
</json:item>
<json:item>
<name>S. Mizumatsu</name>
</json:item>
<json:item>
<name>J. R. Fike</name>
</json:item>
<json:item>
<name>T. D. Palmer</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>962</last>
<first>955</first>
</pages>
<author></author>
<title>Nature Med.</title>
</host>
<title>Irradiation induces neural precursor-cell dysfunction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. A. Cecchi</name>
</json:item>
<json:item>
<name>L. T. Petreanu</name>
</json:item>
<json:item>
<name>A. Alvarez-Buylla</name>
</json:item>
<json:item>
<name>M. O. Magnasco</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>182</last>
<first>175</first>
</pages>
<author></author>
<title>J. Comput. Neurosci.</title>
</host>
<title>Unsupervised learning and adaptation in a model of adult neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Becker</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>738</last>
<first>722</first>
</pages>
<author></author>
<title>Hippocampus</title>
</host>
<title>A computational principle for hippocampal learning and neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. A. Meltzer</name>
</json:item>
<json:item>
<name>R. Yabaluri</name>
</json:item>
<json:item>
<name>K. Deisseroth</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>660</last>
<first>653</first>
</pages>
<author></author>
<title>Trends Neurosci.</title>
</host>
<title>A role for circuit homeostasis in adult neurogenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. A. Chambers</name>
</json:item>
<json:item>
<name>M. N. Potenza</name>
</json:item>
<json:item>
<name>R. E. Hoffman</name>
</json:item>
<json:item>
<name>W. Miranker</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>758</last>
<first>747</first>
</pages>
<author></author>
<title>Neuropsychopharmacology</title>
</host>
<title>Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Kempermann</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>638</last>
<first>635</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Why new neurons? Possible functions for adult hippocampal neurogenesis</title>
</json:item>
<json:item>
<host>
<pages>
<last>165</last>
<first>141</first>
</pages>
<author></author>
<title>Olfaction</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. K. Hensch</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>888</last>
<first>877</first>
</pages>
<author></author>
<title>Nature Rev. Neurosci.</title>
</host>
<title>Critical period plasticity in local cortical circuits</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. C. Brunjes</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>160</last>
<first>146</first>
</pages>
<author></author>
<title>Brain Res. Brain Res. Rev.</title>
</host>
<title>Unilateral naris closure and olfactory system development</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Brennan</name>
</json:item>
<json:item>
<name>H. Kaba</name>
</json:item>
<json:item>
<name>E. B. Keverne</name>
</json:item>
</author>
<host>
<volume>250</volume>
<pages>
<last>1226</last>
<first>1223</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Olfactory recognition: a simple memory system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Lemasson</name>
</json:item>
<json:item>
<name>A. Saghatelyan</name>
</json:item>
<json:item>
<name>J. C. Olivo-Marin</name>
</json:item>
<json:item>
<name>P. -M. Lledo</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>6825</last>
<first>6816</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Neonatal and adult neurogenesis provide two distinct populations of granule cells in the mouse OB</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. M. Parent</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>272</last>
<first>261</first>
</pages>
<author></author>
<title>Neuroscientist</title>
</host>
<title>Injury-induced neurogenesis in the adult mammalian brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. K. Dash</name>
</json:item>
<json:item>
<name>S. A. Mach</name>
</json:item>
<json:item>
<name>A. N. Moore</name>
</json:item>
</author>
<host>
<volume>63</volume>
<pages>
<last>319</last>
<first>313</first>
</pages>
<author></author>
<title>J. Neurosci. Res.</title>
</host>
<title>Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Yagita</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>756</last>
<first>750</first>
</pages>
<author></author>
<title>J. Neurosci. Res.</title>
</host>
<title>Differential expression of Musashi1 and nestin in the adult rat hippocampus after ischemia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Z. Kokaia</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>132</last>
<first>127</first>
</pages>
<author></author>
<title>Curr. Opin. Neurobiol.</title>
</host>
<title>Neurogenesis after ischaemic brain insults</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. C. Rice</name>
</json:item>
</author>
<host>
<volume>183</volume>
<pages>
<last>417</last>
<first>406</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Arvidsson</name>
</json:item>
<json:item>
<name>T. Collin</name>
</json:item>
<json:item>
<name>D. Kirik</name>
</json:item>
<json:item>
<name>Z. Kokaia</name>
</json:item>
<json:item>
<name>O. Lindvall</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>970</last>
<first>963</first>
</pages>
<author></author>
<title>Nature Med.</title>
</host>
<title>Neuronal replacement from endogenous precursors in the adult brain after stroke</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Jin</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>189</last>
<first>171</first>
</pages>
<author></author>
<title>Mol. Cell. Neurosci.</title>
</host>
<title>Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Zhang</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>448</last>
<first>441</first>
</pages>
<author></author>
<title>J. Cereb. Blood Flow Metab.</title>
</host>
<title>Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. L. Zhang</name>
</json:item>
<json:item>
<name>Z. G. Zhang</name>
</json:item>
<json:item>
<name>L. Zhang</name>
</json:item>
<json:item>
<name>M. Chopp</name>
</json:item>
</author>
<host>
<volume>105</volume>
<pages>
<last>41</last>
<first>33</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Buffo</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>18188</last>
<first>18183</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Curtis</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>9027</last>
<first>9023</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Jin</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>13367</last>
<first>13363</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APP) mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Yoshimura</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>5879</last>
<first>5874</first>
</pages>
<author></author>
<title>Proc. Natl Acad. Sci. USA</title>
</host>
<title>FGF-2 regulation of neurogenesis in adult hippocampus after brain injury</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Y. Zhu</name>
</json:item>
<json:item>
<name>S. H. Liu</name>
</json:item>
<json:item>
<name>H. S. Sun</name>
</json:item>
<json:item>
<name>Y. M. Lu</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>229</last>
<first>223</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Manev</name>
</json:item>
<json:item>
<name>T. Uz</name>
</json:item>
<json:item>
<name>R. Manev</name>
</json:item>
<json:item>
<name>Z. Zhang</name>
</json:item>
</author>
<host>
<volume>939</volume>
<pages>
<last>51</last>
<first>45</first>
</pages>
<author></author>
<title>Ann. NY Acad. Sci.</title>
</host>
<title>Neurogenesis and neuroprotection in the adult brain. A putative role for 5-lipoxygenase?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Nakatomi</name>
</json:item>
</author>
<host>
<volume>110</volume>
<pages>
<last>441</last>
<first>429</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. T. Nelson</name>
</json:item>
</author>
<host>
<volume>160</volume>
<pages>
<last>1206</last>
<first>1201</first>
</pages>
<author></author>
<title>Am. J. Pathol.</title>
</host>
<title>Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Sanai</name>
</json:item>
</author>
<host>
<volume>427</volume>
<pages>
<last>744</last>
<first>740</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Morshead</name>
</json:item>
<json:item>
<name>D. van der Kooy</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>131</last>
<first>125</first>
</pages>
<author></author>
<title>Curr. Opin. Neurobiol.</title>
</host>
<title>Disguising adult neural stem cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Ge</name>
</json:item>
</author>
<host>
<volume>439</volume>
<pages>
<last>593</last>
<first>589</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>GABA regulates synaptic integration of newly generated neurons in the adult brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. A. Kulkarni</name>
</json:item>
<json:item>
<name>S. Jha</name>
</json:item>
<json:item>
<name>V. A. Vaidya</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>2012</last>
<first>2008</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Mercer</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>215</last>
<first>205</first>
</pages>
<author></author>
<title>J. Neurosci. Res.</title>
</host>
<title>PACAP promotes neural stem cell proliferation in adult mouse brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Lu</name>
</json:item>
</author>
<host>
<volume>183</volume>
<pages>
<last>609</last>
<first>600</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Modification of hippocampal neurogenesis and neuroplasticity by social environments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. E. Derrick</name>
</json:item>
<json:item>
<name>A. D. York</name>
</json:item>
<json:item>
<name>J. L. MartinezJr.</name>
</json:item>
</author>
<host>
<volume>857</volume>
<pages>
<last>307</last>
<first>300</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Increased granule cell neurogenesis in the adult DG following mossy fiber stimulation sufficient to induce long-term potentiation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. J. Lucassen</name>
</json:item>
<json:item>
<name>E. Fuchs</name>
</json:item>
<json:item>
<name>B. Czeh</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>796</last>
<first>789</first>
</pages>
<author></author>
<title>Biol. Psychiatry</title>
</host>
<title>Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal DG and temporal cortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.H. Jang</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>1513</last>
<first>1509</first>
</pages>
<author></author>
<title>Neuroreport</title>
</host>
<title>Alcohol and nicotine reduce cell proliferation and enhance apoptosis in DG</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Sawamoto</name>
</json:item>
</author>
<host>
<volume>311</volume>
<pages>
<last>632</last>
<first>629</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>New neurons follow the flow of cerebrospinal fluid in the adult brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Ziv</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>275</last>
<first>268</first>
</pages>
<author></author>
<title>Nature Neurosci.</title>
</host>
<title>Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Gtz</name>
</json:item>
<json:item>
<name>W. B. Huttner</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>788</last>
<first>777</first>
</pages>
<author></author>
<title>Nature Rev. Mol. Cell Biol.</title>
</host>
<title>The cell biology of neurogenesis</title>
</json:item>
</refBibs>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>7</volume>
<pages>
<total>15</total>
<last>193</last>
<first>179</first>
</pages>
<issn>
<json:string>1471-003X</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1471-0048</json:string>
</eissn>
<title>Nature Reviews Neuroscience</title>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1038/nrn1867</json:string>
</doi>
<id>100627B78B6051122503EC2CC766162DB007969A</id>
<score>0.15968217</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/100627B78B6051122503EC2CC766162DB007969A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/100627B78B6051122503EC2CC766162DB007969A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/100627B78B6051122503EC2CC766162DB007969A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Adult neurogenesis and functional plasticity in neuronal circuits</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Nature Publishing Group</publisher>
<availability>
<p>©2006 Nature Publishing Group</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Adult neurogenesis and functional plasticity in neuronal circuits</title>
<author xml:id="author-1">
<persName>
<forename type="first">Pierre-Marie</forename>
<surname>Lledo</surname>
</persName>
<email>pmlledo@pasteur.fr</email>
<note type="biography">PierreMarie Lledo received a B.Sc. and a Ph.D. in neuroscience from the University of Bordeaux, France. He has studied CNS plasticity and neurogenesis in the hippocampus and olfactory system of rodents. He is currently the head of a research unit based at the Pasteur Institute, Paris, France, and of the Centre National de la Recherche Scientifique (CNRS), Unit 2182 of the French Research Council.</note>
<affiliation>PierreMarie Lledo received a B.Sc. and a Ph.D. in neuroscience from the University of Bordeaux, France. He has studied CNS plasticity and neurogenesis in the hippocampus and olfactory system of rodents. He is currently the head of a research unit based at the Pasteur Institute, Paris, France, and of the Centre National de la Recherche Scientifique (CNRS), Unit 2182 of the French Research Council.</affiliation>
<affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Mariana</forename>
<surname>Alonso</surname>
</persName>
<note type="biography">Mariana Alonso received a B.Sc. and a Ph.D. from the University of Buenos Aires, Argentina, studying the role of BDNF on hippocampal plasticity and memory formation in rodents. She now holds a postdoctoral fellowship from the Fondation pour la Recherche Medicale.</note>
<affiliation>Mariana Alonso received a B.Sc. and a Ph.D. from the University of Buenos Aires, Argentina, studying the role of BDNF on hippocampal plasticity and memory formation in rodents. She now holds a postdoctoral fellowship from the Fondation pour la Recherche Medicale.</affiliation>
<affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Matthew S.</forename>
<surname>Grubb</surname>
</persName>
<note type="biography">Matthew Grubb received his B.A., M.Sc. and D.Phil. in neuroscience from the University of Oxford, UK, studying the structure, function and development of the mouse visual system. He currently holds a Marie-Curie IntraEuropean postdoctoral fellowship, and, for his sins, supports Swindon Town Football Club, UK.</note>
<affiliation>Matthew Grubb received his B.A., M.Sc. and D.Phil. in neuroscience from the University of Oxford, UK, studying the structure, function and development of the mouse visual system. He currently holds a Marie-Curie IntraEuropean postdoctoral fellowship, and, for his sins, supports Swindon Town Football Club, UK.</affiliation>
<affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Nature Reviews Neuroscience</title>
<idno type="pISSN">1471-003X</idno>
<idno type="eISSN">1471-0048</idno>
<imprint>
<publisher>Nature Publishing Group</publisher>
<date type="published" when="2006-03"></date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="179">179</biblScope>
<biblScope unit="page" to="193">193</biblScope>
</imprint>
</monogr>
<idno type="istex">100627B78B6051122503EC2CC766162DB007969A</idno>
<idno type="DOI">10.1038/nrn1867</idno>
<idno type="ArticleID">nrn1867</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain the olfactory bulb and the dentate gyrus new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2006-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/100627B78B6051122503EC2CC766162DB007969A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus nature" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NPG//DTD XML Article//EN" URI="NPG_XML_Article.dtd" name="istex:docType">
<istex:entity PUBLIC="-//NatureAmerica//FICI nrn1867-f1//EN" URL="//snapple/web_d/web/npg/nrn/journal/vaop/ncurrent/images/nrn1867-f1" NDATA="ITEM" name="figf1"></istex:entity>
<istex:entity PUBLIC="-//NatureAmerica//FICI nrn1867-f2//EN" URL="//snapple/web_d/web/npg/nrn/journal/vaop/ncurrent/images/nrn1867-f2" NDATA="ITEM" name="figf2"></istex:entity>
<istex:entity PUBLIC="-//NatureAmerica//FICI nrn1867-f3//EN" URL="//snapple/web_d/web/npg/nrn/journal/vaop/ncurrent/images/nrn1867-f3" NDATA="ITEM" name="figf3"></istex:entity>
<istex:entity PUBLIC="-//NatureAmerica//FICI nrn1867-f4//EN" URL="//snapple/web_d/web/npg/nrn/journal/vaop/ncurrent/images/nrn1867-f4" NDATA="ITEM" name="figf4"></istex:entity>
</istex:docType>
<istex:document>
<article id="nrn1867" language="eng" publish="issue" relation="no" origsrc="yes"><!--nrn1867-->
<pubfm>
<jtl>Nature Reviews Neuroscience</jtl>
<vol>7</vol>
<iss>3</iss>
<idt>200603</idt>
<categ id="rv"></categ>
<pp>
<spn>179</spn>
<epn>193</epn>
<cnt>15</cnt>
</pp>
<issn type="print">1471-003X</issn>
<issn type="electronic">1471-0048</issn>
<cpg>
<cpy>2006</cpy>
<cpn>Nature Publishing Group</cpn>
</cpg>
<doi>10.1038/nrn1867</doi>
</pubfm>
<fm>
<atl>Adult neurogenesis and functional plasticity in neuronal circuits</atl>
<aug>
<cau>
<fnm>Pierre-Marie</fnm>
<snm>Lledo</snm>
<inits>P -M</inits>
<orf rid="a1"></orf>
<corf rid="c1"></corf>
<bio>
<p>Pierre–Marie Lledo received a B.Sc. and a Ph.D. in neuroscience from the University of Bordeaux, France. He has studied CNS plasticity and neurogenesis in the hippocampus and olfactory system of rodents. He is currently the head of a research unit based at the Pasteur Institute, Paris, France, and of the Centre National de la Recherche Scientifique (CNRS), Unit 2182 of the French Research Council.</p>
</bio>
</cau>
<au>
<fnm>Mariana</fnm>
<snm>Alonso</snm>
<inits>M</inits>
<orf rid="a1"></orf>
<bio>
<p>Mariana Alonso received a B.Sc. and a Ph.D. from the University of Buenos Aires, Argentina, studying the role of BDNF on hippocampal plasticity and memory formation in rodents. She now holds a postdoctoral fellowship from the Fondation pour la Recherche Medicale.</p>
</bio>
</au>
<au>
<fnm>Matthew S.</fnm>
<snm>Grubb</snm>
<inits>M S</inits>
<orf rid="a1"></orf>
<bio>
<p>Matthew Grubb received his B.A., M.Sc. and D.Phil. in neuroscience from the University of Oxford, UK, studying the structure, function and development of the mouse visual system. He currently holds a Marie-Curie IntraEuropean postdoctoral fellowship, and, for his sins, supports Swindon Town Football Club, UK.</p>
</bio>
</au>
<aff>
<oid id="a1"></oid>
<org>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associée 2182, 25, rue du Docteur Roux</org>
,
<zip>75724</zip>
<cty>Paris</cty>
<st>cedex 15</st>
,
<cny>France</cny>
.</aff>
<caff>
<coid id="c1"></coid>
<email>pmlledo@pasteur.fr</email>
</caff>
</aug>
<execsumm>
<p>
<list id="l1" type="bullet">
<li>The adult brain is a plastic place. Neuronal responses to a changing environment can occur at the level of molecules, spines, dendrites, axons and, with processes of adult neurogenesis, at the level of entire cells.</li>
<li>Neurogenesis definitely occurs in two regions of the adult brain: the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus.</li>
<li>Neuroblasts from the SVZ migrate along the rostral migratory stream (RMS) to provide new inhibitory granule cells and glomerular cells in the olfactory bulb. Newborn cells from the SGZ migrate to the granular layer of the dentate gyrus, where most of them become excitatory granule cells.</li>
<li>The functional maturation of adult-born cells always involves the expression of neurotransmitter receptors before synaptic activity, and the presence of (excitatory) GABA (γ-aminobutyric acid)-mediated influences prior to glutamatergic input. But other maturational features depend on specific cell types, with, for example, olfactory bulb granule cells being late to develop sodium-based action potentials.</li>
<li>Factors intrinsic to adult-born cells influence many facets of their maturation. Proliferation and cell fate decisions are particularly strongly controlled by the proteins expressed by neuroblasts.</li>
<li>Factors extrinsic to adult-born cells also have a huge influence on all processes of neurogenesis. In this way, adult neurogenesis represents another weapon in the brain's plasticity armoury for dealing with a constantly changing world.</li>
<li>With respect to its possible functions, adult neurogenesis might alter the olfactory bulb and hippocampus at the cellular, network and system levels. Computational models suggest that cell turnover might be especially beneficial for the learning of new information.</li>
<li>Definitive experiments to demonstrate the function(s) of adult neurogenesis await manipulations that can specifically and completely eliminate it. However, numerous lines of correlative and intervention evidence suggest that hippocampal neurogenesis might be crucial for spatial learning, and that olfactory bulb neurogenesis could be important for sensory discrimination.</li>
</list>
</p>
</execsumm>
<websumm>Lledo and colleagues provide an up-to-date review of recent developments in our understanding of neurogenesis in the adult brain, with a comparative view of the generation of new neurons in the olfactory bulb and the dentate gyrus.</websumm>
<abs>
<p>The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain — the olfactory bulb and the dentate gyrus — new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.</p>
</abs>
</fm>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Adult neurogenesis and functional plasticity in neuronal circuits</title>
</titleInfo>
<titleInfo type="alternative" lang="eng" contentType="CDATA">
<title>Adult neurogenesis and functional plasticity in neuronal circuits</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pierre-Marie</namePart>
<namePart type="family">Lledo</namePart>
<affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</affiliation>
<affiliation>E-mail: pmlledo@pasteur.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<description>PierreMarie Lledo received a B.Sc. and a Ph.D. in neuroscience from the University of Bordeaux, France. He has studied CNS plasticity and neurogenesis in the hippocampus and olfactory system of rodents. He is currently the head of a research unit based at the Pasteur Institute, Paris, France, and of the Centre National de la Recherche Scientifique (CNRS), Unit 2182 of the French Research Council.</description>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Alonso</namePart>
<affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<description>Mariana Alonso received a B.Sc. and a Ph.D. from the University of Buenos Aires, Argentina, studying the role of BDNF on hippocampal plasticity and memory formation in rodents. She now holds a postdoctoral fellowship from the Fondation pour la Recherche Medicale.</description>
</name>
<name type="personal">
<namePart type="given">Matthew S.</namePart>
<namePart type="family">Grubb</namePart>
<affiliation>Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associe 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<description>Matthew Grubb received his B.A., M.Sc. and D.Phil. in neuroscience from the University of Oxford, UK, studying the structure, function and development of the mouse visual system. He currently holds a Marie-Curie IntraEuropean postdoctoral fellowship, and, for his sins, supports Swindon Town Football Club, UK.</description>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review"></genre>
<originInfo>
<publisher>Nature Publishing Group</publisher>
<dateIssued encoding="w3cdtf">2006-03</dateIssued>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="eng">The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain the olfactory bulb and the dentate gyrus new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Nature Reviews Neuroscience</title>
</titleInfo>
<genre type="journal" displayLabel="journal"></genre>
<identifier type="ISSN">1471-003X</identifier>
<identifier type="eISSN">1471-0048</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>179</start>
<end>193</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">100627B78B6051122503EC2CC766162DB007969A</identifier>
<identifier type="DOI">10.1038/nrn1867</identifier>
<identifier type="ArticleID">nrn1867</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2006 Nature Publishing Group</accessCondition>
<recordInfo>
<recordContentSource>NATURE</recordContentSource>
</recordInfo>
</mods>
</metadata>
<annexes>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/document/100627B78B6051122503EC2CC766162DB007969A/annexes/jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001360 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001360 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:100627B78B6051122503EC2CC766162DB007969A
   |texte=   Adult neurogenesis and functional plasticity in neuronal circuits
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024