La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?

Identifieur interne : 000835 ( Istex/Corpus ); précédent : 000834; suivant : 000836

Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?

Auteurs : Frédéric Vivier ; Ernst Maier-Reimer ; Robert H. Tyler

Source :

RBID : ISTEX:0272421BA1B7E60096C4C6C176136F584BAA0FF0

Abstract

With a volume transport of ∼134 × 106 m3/s at the Drake Passage, the Antarctic Circumpolar Current (ACC) is the strongest ocean current. In the interest of estimating the secondary magnetic fields generated by the magnetohydrodynamic interaction of this flow with Earth's main field, we compare numerical results for the magnetic fields obtained using flow from three different ocean general circulation models. These simulations all expect detectable ocean signals in the magnetic records at ground and satellite altitude (400 km). The variability of this contribution is highly correlated with the ACC transport, a very important variable for climate studies. Observed magnetic fields could then be used, in principle, to derive an index of variability of the ACC. However given its small amplitude compared with other magnetic contributions, extracting the ocean's signal from observations remains a challenge at this time.

Url:
DOI: 10.1029/2004GL019804

Links to Exploration step

ISTEX:0272421BA1B7E60096C4C6C176136F584BAA0FF0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
<author>
<name sortKey="Vivier, Frederic" sort="Vivier, Frederic" uniqKey="Vivier F" first="Frédéric" last="Vivier">Frédéric Vivier</name>
<affiliation>
<mods:affiliation>Laboratoire d'Océanographie Dynamique et de Climatologie, CNRS UMR 7617, Université Pierre et Marie Curie, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: frederic.vivier@lodyc.jussieu.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maier Eimer, Ernst" sort="Maier Eimer, Ernst" uniqKey="Maier Eimer E" first="Ernst" last="Maier-Reimer">Ernst Maier-Reimer</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Robert H" sort="Tyler, Robert H" uniqKey="Tyler R" first="Robert H." last="Tyler">Robert H. Tyler</name>
<affiliation>
<mods:affiliation>Applied Physics Laboratory, University of Washington, Washington, Seattle, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0272421BA1B7E60096C4C6C176136F584BAA0FF0</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1029/2004GL019804</idno>
<idno type="url">https://api.istex.fr/document/0272421BA1B7E60096C4C6C176136F584BAA0FF0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000835</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000835</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
<author>
<name sortKey="Vivier, Frederic" sort="Vivier, Frederic" uniqKey="Vivier F" first="Frédéric" last="Vivier">Frédéric Vivier</name>
<affiliation>
<mods:affiliation>Laboratoire d'Océanographie Dynamique et de Climatologie, CNRS UMR 7617, Université Pierre et Marie Curie, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: frederic.vivier@lodyc.jussieu.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maier Eimer, Ernst" sort="Maier Eimer, Ernst" uniqKey="Maier Eimer E" first="Ernst" last="Maier-Reimer">Ernst Maier-Reimer</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Robert H" sort="Tyler, Robert H" uniqKey="Tyler R" first="Robert H." last="Tyler">Robert H. Tyler</name>
<affiliation>
<mods:affiliation>Applied Physics Laboratory, University of Washington, Washington, Seattle, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="ISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-05">2004-05</date>
<biblScope unit="volume">31</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0094-8276</idno>
</series>
<idno type="istex">0272421BA1B7E60096C4C6C176136F584BAA0FF0</idno>
<idno type="DOI">10.1029/2004GL019804</idno>
<idno type="ArticleID">2004GL019804</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0094-8276</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">With a volume transport of ∼134 × 106 m3/s at the Drake Passage, the Antarctic Circumpolar Current (ACC) is the strongest ocean current. In the interest of estimating the secondary magnetic fields generated by the magnetohydrodynamic interaction of this flow with Earth's main field, we compare numerical results for the magnetic fields obtained using flow from three different ocean general circulation models. These simulations all expect detectable ocean signals in the magnetic records at ground and satellite altitude (400 km). The variability of this contribution is highly correlated with the ACC transport, a very important variable for climate studies. Observed magnetic fields could then be used, in principle, to derive an index of variability of the ACC. However given its small amplitude compared with other magnetic contributions, extracting the ocean's signal from observations remains a challenge at this time.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Frédéric Vivier</name>
<affiliations>
<json:string>Laboratoire d'Océanographie Dynamique et de Climatologie, CNRS UMR 7617, Université Pierre et Marie Curie, Paris, France</json:string>
<json:string>E-mail: frederic.vivier@lodyc.jussieu.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ernst Maier‐Reimer</name>
<affiliations>
<json:string>Max Planck Institute for Meteorology, Hamburg, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert H. Tyler</name>
<affiliations>
<json:string>Applied Physics Laboratory, University of Washington, Washington, Seattle, USA</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>2004GL019804</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>With a volume transport of ∼134 × 106 m3/s at the Drake Passage, the Antarctic Circumpolar Current (ACC) is the strongest ocean current. In the interest of estimating the secondary magnetic fields generated by the magnetohydrodynamic interaction of this flow with Earth's main field, we compare numerical results for the magnetic fields obtained using flow from three different ocean general circulation models. These simulations all expect detectable ocean signals in the magnetic records at ground and satellite altitude (400 km). The variability of this contribution is highly correlated with the ACC transport, a very important variable for climate studies. Observed magnetic fields could then be used, in principle, to derive an index of variability of the ACC. However given its small amplitude compared with other magnetic contributions, extracting the ocean's signal from observations remains a challenge at this time.</abstract>
<qualityIndicators>
<score>4.777</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>926</abstractCharCount>
<pdfWordCount>3109</pdfWordCount>
<pdfCharCount>18233</pdfCharCount>
<pdfPageCount>5</pdfPageCount>
<abstractWordCount>139</abstractWordCount>
</qualityIndicators>
<title>Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>S. A. Cunningham</name>
</json:item>
<json:item>
<name>S. G. Alderson</name>
</json:item>
<json:item>
<name>B. A. King</name>
</json:item>
<json:item>
<name>M. A. Brandon</name>
</json:item>
</author>
<host>
<volume>108</volume>
<issue>C5</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Transport and variability of the Antarctic Circumpolar Current in Drake Passage</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Modelling three‐dimensional induction effects in satellite datathe 2nd International Symposium on Three‐Dimensional Electromagnetics</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Holme</name>
</json:item>
<json:item>
<name>N. Olsen</name>
</json:item>
<json:item>
<name>M. Rother</name>
</json:item>
<json:item>
<name>H. Lühr</name>
</json:item>
</author>
<host>
<author></author>
<title>Proceedings of the First CHAMP Science Meeting</title>
</host>
<title>CO2—A CHAMP magnetic field model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. W. Hughes</name>
</json:item>
<json:item>
<name>M. P. Meredith</name>
</json:item>
<json:item>
<name>K. J. Heywood</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>1992</last>
<first>1971</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>Wind driven transport fluctuations through Drake Passage: A southern mode</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Laske</name>
</json:item>
<json:item>
<name>G. Masters</name>
</json:item>
</author>
<host>
<volume>78</volume>
<issue>46</issue>
<author></author>
<title>Eos Trans. AGU</title>
</host>
<title>A global digital map of sediment thickness (abstract)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Madec</name>
</json:item>
<json:item>
<name>P. Delecluse</name>
</json:item>
<json:item>
<name>M. Imbard</name>
</json:item>
<json:item>
<name>C. Lévy</name>
</json:item>
</author>
<host>
<pages>
<first>91</first>
</pages>
<author></author>
<title>Note du Pôle de Modélisation</title>
</host>
<title>OPA 8.1 ocean general circulation model reference manual</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Marsland</name>
</json:item>
<json:item>
<name>H. Haak</name>
</json:item>
<json:item>
<name>J. H. Jungclaus</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>127</last>
<first>91</first>
</pages>
<author></author>
<title>Ocean Dyn.</title>
</host>
<title>The Max‐Planck‐Insitute global ocean sea/ice model with orthogonal curvilinear coordinates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. D. McKnight</name>
</json:item>
</author>
<host>
<volume>122</volume>
<pages>
<last>898</last>
<first>889</first>
</pages>
<author></author>
<title>Geophys. J. Int.</title>
</host>
<title>Lunar daily geomagnetic variations in New Zealand</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U. Mikolajewicz</name>
</json:item>
<json:item>
<name>E. Maier‐Reimer</name>
</json:item>
<json:item>
<name>T. J. Crowley</name>
</json:item>
<json:item>
<name>K.‐Y. Kim</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>426</last>
<first>409</first>
</pages>
<author></author>
<title>Paleoceanography</title>
</host>
<title>Effect of Drake and Panamanian gateways on the circulation of an ocean model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Neubert</name>
</json:item>
<json:item>
<name>M. Mandea</name>
</json:item>
<json:item>
<name>G. Hulot</name>
</json:item>
</author>
<host>
<volume>82</volume>
<pages>
<last>88</last>
<first>81</first>
</pages>
<issue>8</issue>
<author></author>
<title>Eos Trans. AGU</title>
</host>
<title>Ørsted satellite captures high‐precision geomagnetic field data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Olsen</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>3610</last>
<first>3607</first>
</pages>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Ørsted Initial Field Model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. D. Parkinson</name>
</json:item>
<json:item>
<name>V. R. S. Hutton</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>232</last>
<first>261</first>
</pages>
<author></author>
<title>Geomagnetism</title>
</host>
<title>The electrical conductivity of the Earth</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. T. Price</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>310</last>
<first>283</first>
</pages>
<author></author>
<title>Q. J. Mech. Appl. Math.</title>
</host>
<title>The induction of electrical currents in non‐uniform thin sheets and shells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Reigber</name>
</json:item>
<json:item>
<name>H. Luhr</name>
</json:item>
<json:item>
<name>P. Schwintzer</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>134</last>
<first>129</first>
</pages>
<author></author>
<title>Adv. Space Res.</title>
</host>
<title>Champ mission status</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. J. Sabaka</name>
</json:item>
<json:item>
<name>N. Olsen</name>
</json:item>
<json:item>
<name>R. A. Langel</name>
</json:item>
</author>
<host>
<volume>151</volume>
<pages>
<last>68</last>
<first>32</first>
</pages>
<author></author>
<title>Geophys. J. Int.</title>
</host>
<title>A comprehensive model of the quiet‐time, near‐Earth magnetic field: Phase 3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. B. Sanford</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>3493</last>
<first>3476</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Motionally induced electric fields in the sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name> </name>
</json:item>
</author>
<host>
<author></author>
<title>Report for Mission Selection</title>
</host>
<title>Swarm, the Earth's magnetic field and environment explorers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. R. Toggweiler</name>
</json:item>
<json:item>
<name>B. Samuels</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>500</last>
<first>477</first>
</pages>
<author></author>
<title>Deep Sea Res., Part I</title>
</host>
<title>Effect of Drake Passage on the global thermohaline circulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Tyler</name>
</json:item>
<json:item>
<name>L. A. Mysak</name>
</json:item>
<json:item>
<name>J. M. Oberhuber</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>5552</last>
<first>5531</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Electromagnetic fields generated by a three dimensional global ocean circulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Tyler</name>
</json:item>
<json:item>
<name>J. M. Oberhuber</name>
</json:item>
<json:item>
<name>T. B. Sanford</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>432</last>
<first>429</first>
</pages>
<author></author>
<title>Phys. Chem. Earth, Part A</title>
</host>
<title>The potential for using ocean generated electromagnetic fields to remotely sense ocean variability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Tyler</name>
</json:item>
<json:item>
<name>S. Maus</name>
</json:item>
<json:item>
<name>H. Lühr</name>
</json:item>
</author>
<host>
<volume>299</volume>
<pages>
<last>241</last>
<first>239</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Satellite observations of magnetic fields due to ocean tidal flow</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Whitworth</name>
</json:item>
<json:item>
<name>R. G. Peterson</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>816</last>
<first>810</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>31</volume>
<publisherId>
<json:string>GRL</json:string>
</publisherId>
<pages>
<total>5</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0094-8276</json:string>
</issn>
<issue>10</issue>
<subject>
<json:item>
<value>GEOMAGNETISM AND PALEOMAGNETISM</value>
</json:item>
<json:item>
<value>Geomagnetism and Paleomagnetism: Time variations—diurnal to secular</value>
</json:item>
<json:item>
<value>Spatial variations attributed to seafloor spreading</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Oceans</value>
</json:item>
<json:item>
<value>Climate variability</value>
</json:item>
<json:item>
<value>MARINE GEOLOGY AND GEOPHYSICS</value>
</json:item>
<json:item>
<value>Marine Geology and Geophysics: Geomagnetism</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Climate change and variability</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: GENERAL</value>
</json:item>
<json:item>
<value>Instruments and techniques</value>
</json:item>
<json:item>
<value>Climate and interannual variability</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Currents</value>
</json:item>
<json:item>
<value>Decadal ocean variability</value>
</json:item>
<json:item>
<value>Oceans</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-8007</json:string>
</eissn>
<title>Geophysical Research Letters</title>
<doi>
<json:string>10.1002/(ISSN)1944-8007</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1029/2004GL019804</json:string>
</doi>
<id>0272421BA1B7E60096C4C6C176136F584BAA0FF0</id>
<score>0.15096205</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0272421BA1B7E60096C4C6C176136F584BAA0FF0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0272421BA1B7E60096C4C6C176136F584BAA0FF0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0272421BA1B7E60096C4C6C176136F584BAA0FF0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2004 by the American Geophysical Union.</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
<author xml:id="author-1">
<persName>
<forename type="first">Frédéric</forename>
<surname>Vivier</surname>
</persName>
<email>frederic.vivier@lodyc.jussieu.fr</email>
<affiliation>Laboratoire d'Océanographie Dynamique et de Climatologie, CNRS UMR 7617, Université Pierre et Marie Curie, Paris, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Ernst</forename>
<surname>Maier‐Reimer</surname>
</persName>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Robert H.</forename>
<surname>Tyler</surname>
</persName>
<affiliation>Applied Physics Laboratory, University of Washington, Washington, Seattle, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="pISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<idno type="DOI">10.1002/(ISSN)1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-05"></date>
<biblScope unit="volume">31</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">0272421BA1B7E60096C4C6C176136F584BAA0FF0</idno>
<idno type="DOI">10.1029/2004GL019804</idno>
<idno type="ArticleID">2004GL019804</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>With a volume transport of ∼134 × 106 m3/s at the Drake Passage, the Antarctic Circumpolar Current (ACC) is the strongest ocean current. In the interest of estimating the secondary magnetic fields generated by the magnetohydrodynamic interaction of this flow with Earth's main field, we compare numerical results for the magnetic fields obtained using flow from three different ocean general circulation models. These simulations all expect detectable ocean signals in the magnetic records at ground and satellite altitude (400 km). The variability of this contribution is highly correlated with the ACC transport, a very important variable for climate studies. Observed magnetic fields could then be used, in principle, to derive an index of variability of the ACC. However given its small amplitude compared with other magnetic contributions, extracting the ocean's signal from observations remains a challenge at this time.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>GEOMAGNETISM AND PALEOMAGNETISM</term>
</item>
<item>
<term>Geomagnetism and Paleomagnetism: Time variations—diurnal to secular</term>
</item>
<item>
<term>Spatial variations attributed to seafloor spreading</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Oceans</term>
</item>
<item>
<term>Climate variability</term>
</item>
<item>
<term>MARINE GEOLOGY AND GEOPHYSICS</term>
</item>
<item>
<term>Marine Geology and Geophysics: Geomagnetism</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Climate change and variability</term>
</item>
<item>
<term>OCEANOGRAPHY: GENERAL</term>
</item>
<item>
<term>Instruments and techniques</term>
</item>
<item>
<term>Climate and interannual variability</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Currents</term>
</item>
<item>
<term>Decadal ocean variability</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Oceans</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004-02-24">Received</change>
<change when="2004-05-03">Registration</change>
<change when="2004-05">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0272421BA1B7E60096C4C6C176136F584BAA0FF0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="grl18237">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-8007</doi>
<issn type="print">0094-8276</issn>
<issn type="electronic">1944-8007</issn>
<idGroup>
<id type="product" value="GRL"></id>
<id type="coden" value="GPRLAJ"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GEOPHYSICAL RESEARCH LETTERS">Geophysical Research Letters</title>
<title type="short">Geophys. Res. Lett.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="100">
<doi>10.1002/grl.v31.10</doi>
<numberingGroup>
<numbering type="journalVolume" number="31">31</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2004-05">May 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="240" type="article" status="forIssue">
<doi>10.1029/2004GL019804</doi>
<idGroup>
<id type="editorialOffice" value="2004GL019804"></id>
<id type="society" value="L10306"></id>
<id type="unit" value="GRL18237"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="5"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Oceans</title>
<title type="tocHeading1">Oceans</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2004 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-02-24"></event>
<event type="manuscriptRevised" date="2004-04-29"></event>
<event type="manuscriptAccepted" date="2004-05-03"></event>
<event type="firstOnline" date="2004-05-27"></event>
<event type="publishedOnlineFinalForm" date="2004-05-27"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1500">GEOMAGNETISM AND PALEOMAGNETISM</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1555">Geomagnetism and Paleomagnetism: Time variations—diurnal to secular</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1550">Spatial variations attributed to seafloor spreading</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1635">Oceans</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1616">Climate variability</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3005">Marine Geology and Geophysics: Geomagnetism</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3305">Climate change and variability</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4294">Instruments and techniques</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4215">Climate and interannual variability</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4512">Currents</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4513">Decadal ocean variability</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="grl18237-cit-0000" type="self">
<author>
<familyName>Vivier</familyName>
,
<givenNames>F.</givenNames>
</author>
,
<author>
<givenNames>E.</givenNames>
<familyName>Maier‐Reimer</familyName>
</author>
, and
<author>
<givenNames>R. H.</givenNames>
<familyName>Tyler</familyName>
</author>
(
<pubYear year="2004">2004</pubYear>
),
<articleTitle>Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</articleTitle>
<journalTitle>Geophys. Res. Lett.</journalTitle>
,
<vol>31</vol>
, L10306, doi:
<accessionId ref="info:doi/10.1029/2004GL019804">10.1029/2004GL019804</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GRL.GRL18237.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
<title type="short">MAGNETIC FIELDS GENERATED BY THE ACC</title>
<title type="shortAuthors">Vivier
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="grl18237-cr-0001" affiliationRef="#grl18237-aff-0001">
<personName>
<givenNames>Frédéric</givenNames>
<familyName>Vivier</familyName>
</personName>
<contactDetails>
<email normalForm="frederic.vivier@lodyc.jussieu.fr">frederic.vivier@lodyc.jussieu.fr</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="grl18237-cr-0002" affiliationRef="#grl18237-aff-0002">
<personName>
<givenNames>Ernst</givenNames>
<familyName>Maier‐Reimer</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="grl18237-cr-0003" affiliationRef="#grl18237-aff-0003">
<personName>
<givenNames>Robert H.</givenNames>
<familyName>Tyler</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="grl18237-aff-0001">
<orgDiv>Laboratoire d'Océanographie Dynamique et de Climatologie, CNRS UMR 7617</orgDiv>
<orgName>Université Pierre et Marie Curie</orgName>
<address>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="grl18237-aff-0002">
<orgName>Max Planck Institute for Meteorology</orgName>
<address>
<city>Hamburg</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="grl18237-aff-0003">
<orgDiv>Applied Physics Laboratory</orgDiv>
<orgName>University of Washington</orgName>
<address>
<city>Seattle</city>
<countryPart>Washington</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="grl18237-para-0001" label="1">With a volume transport of ∼134 × 10
<sup>6</sup>
m
<sup>3</sup>
/s at the Drake Passage, the Antarctic Circumpolar Current (ACC) is the strongest ocean current. In the interest of estimating the secondary magnetic fields generated by the magnetohydrodynamic interaction of this flow with Earth's main field, we compare numerical results for the magnetic fields obtained using flow from three different ocean general circulation models. These simulations all expect detectable ocean signals in the magnetic records at ground and satellite altitude (400 km). The variability of this contribution is highly correlated with the ACC transport, a very important variable for climate studies. Observed magnetic fields could then be used, in principle, to derive an index of variability of the ACC. However given its small amplitude compared with other magnetic contributions, extracting the ocean's signal from observations remains a challenge at this time.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MAGNETIC FIELDS GENERATED BY THE ACC</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Vivier</namePart>
<affiliation>Laboratoire d'Océanographie Dynamique et de Climatologie, CNRS UMR 7617, Université Pierre et Marie Curie, Paris, France</affiliation>
<affiliation>E-mail: frederic.vivier@lodyc.jussieu.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ernst</namePart>
<namePart type="family">Maier‐Reimer</namePart>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert H.</namePart>
<namePart type="family">Tyler</namePart>
<affiliation>Applied Physics Laboratory, University of Washington, Washington, Seattle, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2004-05</dateIssued>
<dateCaptured encoding="w3cdtf">2004-02-24</dateCaptured>
<dateValid encoding="w3cdtf">2004-05-03</dateValid>
<edition>Vivier, F., E. Maier‐Reimer, and R. H. Tyler (2004), Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow? Geophys. Res. Lett., 31, L10306, doi:10.1029/2004GL019804.</edition>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
</physicalDescription>
<abstract>With a volume transport of ∼134 × 106 m3/s at the Drake Passage, the Antarctic Circumpolar Current (ACC) is the strongest ocean current. In the interest of estimating the secondary magnetic fields generated by the magnetohydrodynamic interaction of this flow with Earth's main field, we compare numerical results for the magnetic fields obtained using flow from three different ocean general circulation models. These simulations all expect detectable ocean signals in the magnetic records at ground and satellite altitude (400 km). The variability of this contribution is highly correlated with the ACC transport, a very important variable for climate studies. Observed magnetic fields could then be used, in principle, to derive an index of variability of the ACC. However given its small amplitude compared with other magnetic contributions, extracting the ocean's signal from observations remains a challenge at this time.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Geophysical Research Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Geophys. Res. Lett.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1500">GEOMAGNETISM AND PALEOMAGNETISM</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1555">Geomagnetism and Paleomagnetism: Time variations—diurnal to secular</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1550">Spatial variations attributed to seafloor spreading</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1635">Oceans</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1616">Climate variability</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3005">Marine Geology and Geophysics: Geomagnetism</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3305">Climate change and variability</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4294">Instruments and techniques</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4215">Climate and interannual variability</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4512">Currents</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4513">Decadal ocean variability</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Oceans</topic>
</subject>
<identifier type="ISSN">0094-8276</identifier>
<identifier type="eISSN">1944-8007</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-8007</identifier>
<identifier type="CODEN">GPRLAJ</identifier>
<identifier type="PublisherID">GRL</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>5</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0272421BA1B7E60096C4C6C176136F584BAA0FF0</identifier>
<identifier type="DOI">10.1029/2004GL019804</identifier>
<identifier type="ArticleID">2004GL019804</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2004 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000835 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000835 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0272421BA1B7E60096C4C6C176136F584BAA0FF0
   |texte=   Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024