La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release

Identifieur interne : 000806 ( Istex/Corpus ); précédent : 000805; suivant : 000807

A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release

Auteurs : Maurice Israël ; Monique Tomasi

Source :

RBID : ISTEX:6520C72BF60FED028B4273112C889B3C8F083C1B

English descriptors

Abstract

A chemiluminescent procedure for measuring catecholamines (dopamine, norepinephrine, epinephrine) is described. It is based on the observation that lactoperoxidase catalyses both the oxidation of catecholamines, and the chemiluminescent reaction of luminol with their oxidation product. The assay has been adapted for continuously monitoring the release of catecholamines from adrenergic tissues, from cell suspensions and from cells loaded in culture with dopamine.

Url:
DOI: 10.1016/S0165-0270(99)00079-5

Links to Exploration step

ISTEX:6520C72BF60FED028B4273112C889B3C8F083C1B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
<author>
<name sortKey="Israel, Maurice" sort="Israel, Maurice" uniqKey="Israel M" first="Maurice" last="Israël">Maurice Israël</name>
<affiliation>
<mods:affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tomasi, Monique" sort="Tomasi, Monique" uniqKey="Tomasi M" first="Monique" last="Tomasi">Monique Tomasi</name>
<affiliation>
<mods:affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6520C72BF60FED028B4273112C889B3C8F083C1B</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0165-0270(99)00079-5</idno>
<idno type="url">https://api.istex.fr/document/6520C72BF60FED028B4273112C889B3C8F083C1B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000806</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000806</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
<author>
<name sortKey="Israel, Maurice" sort="Israel, Maurice" uniqKey="Israel M" first="Maurice" last="Israël">Maurice Israël</name>
<affiliation>
<mods:affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tomasi, Monique" sort="Tomasi, Monique" uniqKey="Tomasi M" first="Monique" last="Tomasi">Monique Tomasi</name>
<affiliation>
<mods:affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Neuroscience Methods</title>
<title level="j" type="abbrev">NSM</title>
<idno type="ISSN">0165-0270</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">91</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="101">101</biblScope>
<biblScope unit="page" to="107">107</biblScope>
</imprint>
<idno type="ISSN">0165-0270</idno>
</series>
<idno type="istex">6520C72BF60FED028B4273112C889B3C8F083C1B</idno>
<idno type="DOI">10.1016/S0165-0270(99)00079-5</idno>
<idno type="PII">S0165-0270(99)00079-5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0165-0270</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catecholamine</term>
<term>Chemiluminescence</term>
<term>Dopamine</term>
<term>Epinephrine release</term>
<term>Luminol</term>
<term>Norepinephrine</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A chemiluminescent procedure for measuring catecholamines (dopamine, norepinephrine, epinephrine) is described. It is based on the observation that lactoperoxidase catalyses both the oxidation of catecholamines, and the chemiluminescent reaction of luminol with their oxidation product. The assay has been adapted for continuously monitoring the release of catecholamines from adrenergic tissues, from cell suspensions and from cells loaded in culture with dopamine.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Maurice Israël</name>
<affiliations>
<json:string>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Monique Tomasi</name>
<affiliations>
<json:string>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Catecholamine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Dopamine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Norepinephrine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Epinephrine release</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chemiluminescence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Luminol</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A chemiluminescent procedure for measuring catecholamines (dopamine, norepinephrine, epinephrine) is described. It is based on the observation that lactoperoxidase catalyses both the oxidation of catecholamines, and the chemiluminescent reaction of luminol with their oxidation product. The assay has been adapted for continuously monitoring the release of catecholamines from adrenergic tissues, from cell suspensions and from cells loaded in culture with dopamine.</abstract>
<qualityIndicators>
<score>4.709</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>552 x 768 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>466</abstractCharCount>
<pdfWordCount>3977</pdfWordCount>
<pdfCharCount>24031</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>61</abstractWordCount>
</qualityIndicators>
<title>A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
<pii>
<json:string>S0165-0270(99)00079-5</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>A. Albillos</name>
</json:item>
<json:item>
<name>G. Dernick</name>
</json:item>
<json:item>
<name>H. Horstmann</name>
</json:item>
<json:item>
<name>W. Almers</name>
</json:item>
<json:item>
<name>G. Alvarez de Toledo</name>
</json:item>
<json:item>
<name>M. Lindau</name>
</json:item>
</author>
<host>
<volume>389</volume>
<pages>
<last>512</last>
<first>509</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>The exocytotic event in chromaffin cells revealed by patch amperometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Bjorklund</name>
</json:item>
<json:item>
<name>U. Stenevi</name>
</json:item>
</author>
<host>
<pages>
<last>14</last>
<first>3</first>
</pages>
<author></author>
<title>Grafting in the mammalian CNS</title>
</host>
<title>Intracerebral neuronal grafting</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Cadet</name>
</json:item>
<json:item>
<name>C. Brannock</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>131</last>
<first>117</first>
</pages>
<author></author>
<title>Neurochem. Int.</title>
</host>
<title>Free radicals and the pathobiology of brain dopamine systems</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.C. De La Torre</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>5</last>
<first>1</first>
</pages>
<author></author>
<title>J. Neurosci. Method.</title>
</host>
<title>An improved approach to histofluorescence using the SPG method for tissue monoamines</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.F. Espejo</name>
</json:item>
<json:item>
<name>R.J. Montoro</name>
</json:item>
<json:item>
<name>A.J. Armengol</name>
</json:item>
<json:item>
<name>J. Lopez-Barneo</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>206</last>
<first>197</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Cellular and functional recovery of Parkinsonian rats after transplantation of carotid body cell aggregates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.V. Fosse</name>
</json:item>
<json:item>
<name>J. Kolstad</name>
</json:item>
<json:item>
<name>F. Fonnum</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>349</last>
<first>340</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>A bioluminescence method for the measurement of l-glutamate: application to the study of changes in the release of l-glutamate from lateral geniculate nucleus and superior colliculus after visual cortex ablation in rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Furuya</name>
</json:item>
<json:item>
<name>M. Sawada</name>
</json:item>
<json:item>
<name>T. Nagatsu</name>
</json:item>
<json:item>
<name>O. Suzuki</name>
</json:item>
<json:item>
<name>H. Higashida</name>
</json:item>
</author>
<host>
<volume>361</volume>
<pages>
<last>90</last>
<first>77</first>
</pages>
<author></author>
<title>Brain. Res.</title>
</host>
<title>Localization of [3H]serotonin in neuroblastoma×Glioma hybrid cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>1483</last>
<first>1475</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>90</last>
<first>81</first>
</pages>
<author></author>
<title>Neurochem. Int.</title>
</host>
<title>Chemiluminescent determination of acetylcholine and continuous detection of it release from Torpedo electric organ synapses and synaptosomes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>250</last>
<first>248</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Application to mammalian tissues of the chemiluminescent method for detecting acetylcholine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
</author>
<host>
<pages>
<last>135</last>
<first>113</first>
</pages>
<author></author>
<title>Neurochemistry, a Practical Approach</title>
</host>
<title>The use of bioluminescence techniques in neurobiology, with emphasis on the cholinergic system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>2627</last>
<first>2624</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>A bioluminescent γ-aminobutyrate assay for monitoring its release from inhibitory nerve endings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
<json:item>
<name>J. Bruner</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>58</last>
<first>53</first>
</pages>
<author></author>
<title>Neurochem. Int.</title>
</host>
<title>Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
<json:item>
<name>M. Synguelakis</name>
</json:item>
<json:item>
<name>A. Joliot</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>109</last>
<first>103</first>
</pages>
<author></author>
<title>Neurochem. Int.</title>
</host>
<title>Acetylcholine accumulation and release by hybrid NG108-15, glioma and neuroblastoma cells-role of a 15 kDa membrane protein in release</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Israël</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>1793</last>
<first>1789</first>
</pages>
<author></author>
<title>Neuropharmacology</title>
</host>
<title>Calcium-dependent release specificities of various cell lines loaded with different transmitters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.M. Knigge</name>
</json:item>
<json:item>
<name>G. Hoffman</name>
</json:item>
<json:item>
<name>D.E. Scott</name>
</json:item>
<json:item>
<name>J.R. Sladek</name>
</json:item>
</author>
<host>
<volume>120</volume>
<pages>
<last>405</last>
<first>393</first>
</pages>
<author></author>
<title>Brain. Res.</title>
</host>
<title>Identification of catecholamine and luteinizing hormone-releasing hormone (LHRH). Containing neurons in primary cultures of dispersed cells of the basal hypothalamus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Liu</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>551</last>
<first>539</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>F.M. Meunier</name>
</json:item>
<json:item>
<name>M. Israël</name>
</json:item>
<json:item>
<name>B. Lesbats</name>
</json:item>
</author>
<host>
<volume>257</volume>
<pages>
<last>408</last>
<first>407</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Release of ATP from stimulated nerve electroplaque junction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.Y. Pan</name>
</json:item>
<json:item>
<name>L.S. Kao</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>1092</last>
<first>1085</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Catecholamine secretion from bovine adrenal chronaffin cells: The role of Na+/Ca2+ exchange and the intracellular Ca2+ pool</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Takayama</name>
</json:item>
<json:item>
<name>S. Itoh</name>
</json:item>
<json:item>
<name>T. Nagasaki</name>
</json:item>
<json:item>
<name>I. Tanimizu</name>
</json:item>
</author>
<host>
<volume>79</volume>
<pages>
<last>98</last>
<first>93</first>
</pages>
<author></author>
<title>Clin. Chim. Acta</title>
</host>
<title>A new enzymatic method for determination of serum choline-containing phospholipids</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Tenne</name>
</json:item>
<json:item>
<name>J.P. Finberg</name>
</json:item>
<json:item>
<name>M.B. Youdim</name>
</json:item>
<json:item>
<name>S. Ulitzur</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>1384</last>
<first>1378</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>A new rapid and sensitive bioluminescence assay for monoamine oxidase activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Tenne</name>
</json:item>
<json:item>
<name>M.B. Youdim</name>
</json:item>
<json:item>
<name>S. Ulitzur</name>
</json:item>
<json:item>
<name>J.P. Finberg</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>1377</last>
<first>1373</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Deamination of aliplatic amines by monoamine oxidase A and B studies using a bioluminescence technique</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>91</volume>
<pii>
<json:string>S0165-0270(00)X0057-X</json:string>
</pii>
<pages>
<last>107</last>
<first>101</first>
</pages>
<issn>
<json:string>0165-0270</json:string>
</issn>
<issue>1–2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Journal of Neuroscience Methods</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
<json:string>biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0165-0270(99)00079-5</json:string>
</doi>
<id>6520C72BF60FED028B4273112C889B3C8F083C1B</id>
<score>0.14285435</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/6520C72BF60FED028B4273112C889B3C8F083C1B/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/6520C72BF60FED028B4273112C889B3C8F083C1B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/6520C72BF60FED028B4273112C889B3C8F083C1B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Principle of the catecholamine-chemiluminescent assay. Lactoperoxidase catalyzes both the oxidation of catecholamines (dopamine, norepinephrine, epinephrine) and the chemiluminescent oxidation of luminol. It therefore displays a mixed oxidase-peroxidase function.</note>
<note type="content">Fig. 2: Dose response curves for dopamine and norepinephine. The reaction mixture, solution 1 containing lactoperoxidase and luminol (see Section 2), gives a chemiluminescent reaction when the catecholamine is added. Below the curves we show typical responses in the pmol range. The difference between the two curves depends of the batch of lactoperoxidase and solutions, it does not correspond to a specific distinction of the two catecholamines (bar=2 min).</note>
<note type="content">Fig. 3: Determination of the catecholamine content of biological extracts. The TCA ether-washed extract was also treated with chloroform and Triton as described in methods. The catecholamine content of the extract (striatum) is compared to standards (left) and to a blank treated exactly like the sample (bar=2 min). Table 1 gives the results of five experiments performed on different catecholamine containing tissues.</note>
<note type="content">Fig. 4: Catecholamine release from adrenal gland slices. Each mouse adrenal was cut into four slices washed in a large volume (400 ml) of mammalian Krebs. The slice was transferred in solution 1 (A) or 2 (B) and release elicited by KCl depolarization (60 mM) in the presence of calcium (2.5 mM). The proportion of lactoperoxidase and luminol are given in methods. Bottom traces are controls in the absence of calcium (C) or with 60 mM NaCl instead of KCl (D) (bar=2 min).</note>
<note type="content">Fig. 5: Catecholamine release from striatal microfragments. Striatal slices were forced with large volumes of mammalian Krebs through a rigid nylon gauze. The microfragments were allowed to sediment and concentrated in 2 ml for the striata from four mice. Top trace, catecholamine release (presumably dopamine) was triggered with KCl (45 mM) and calcium (2.5 mM). When release declined, two dopamine standards were injected. Bottom trace, control depolarization performed as above but in the absence of calcium (plus 0.7 μM EGTA), no release was measured. A dopamine standard was injected to check the efficiency of the reaction mixture. In both cases we used 10 μl of microfragments taken in the pellet (see Section 2). Release was performed in solution containing lactoperoxidase and luminol as described in Section 2 and Section 3 (bar=2 min).</note>
<note type="content">Fig. 6: Catecholamine release from dissociated adrenergic cell. In A, release was measured in saline solution 1 it was elicited by adding ionophore A23107 (1.2 μm) in the presence of 2.5 mM calcium (top trace). When calcium was reduced to 10 μM, release was clearly lower but not negligible (middle trace). The lower trace shows that a spontaneous leakage occurred even in the absence of ionophore. In B, release was measured in sucrose-Tris (solution 2) and was elicited as in A by the addition of ionophore in the presence of 2.5 mM calcium (top trace) or at 10 μM calcium (lower trace). In this solution, release appears to be negligible in low calcium. Spontaneous leakage was not measurable. The lactoperoxidase and luminol proportions are given in methods (bar=2 min).</note>
<note type="content">Fig. 7: Dopamine release from neuroblastoma cells loaded in culture with dopamine. Top: histochemical demonstration of dopamine in NG108-15 cells loaded in culture with dopamine (2 mM). The glyoxylic acid procedure gives a fluorescent compound with dopamine. Cells could be efficiently loaded with 2–10 mM dopamine. Bottom: dopamine release from loaded cells. NG108-15 cells were loaded with 10 mM dopamine added for 12 h to the culture. Cells from four confluent flasks were collected, washed at least four times in a saline solution and resuspended in 0.5 ml saline. Left: release was measured on 5 μl of cell suspension in solution 2 containing lactoperoxidase and luminol as described in methods. Release was triggered with calcium (1.6 mM) and A23187 (0.7 μM). Two dopamine standards were injected to calibrate release. Right: control, the dopamine loaded cells did not release in the absence of calcium (the mock NaCl injection replaced calcium). The standard shows that the reaction mixture would have detected any dopamine released (bar=2 min).</note>
<note type="content">Table 1: Catecholamine content of rat tissue extractsa</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
<author xml:id="author-1">
<persName>
<forename type="first">Maurice</forename>
<surname>Israël</surname>
</persName>
<note type="correspondence">
<p>Corresponding author</p>
</note>
<affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Monique</forename>
<surname>Tomasi</surname>
</persName>
<affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Neuroscience Methods</title>
<title level="j" type="abbrev">NSM</title>
<idno type="pISSN">0165-0270</idno>
<idno type="PII">S0165-0270(00)X0057-X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">91</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="101">101</biblScope>
<biblScope unit="page" to="107">107</biblScope>
</imprint>
</monogr>
<idno type="istex">6520C72BF60FED028B4273112C889B3C8F083C1B</idno>
<idno type="DOI">10.1016/S0165-0270(99)00079-5</idno>
<idno type="PII">S0165-0270(99)00079-5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A chemiluminescent procedure for measuring catecholamines (dopamine, norepinephrine, epinephrine) is described. It is based on the observation that lactoperoxidase catalyses both the oxidation of catecholamines, and the chemiluminescent reaction of luminol with their oxidation product. The assay has been adapted for continuously monitoring the release of catecholamines from adrenergic tissues, from cell suspensions and from cells loaded in culture with dopamine.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Catecholamine</term>
</item>
<item>
<term>Dopamine</term>
</item>
<item>
<term>Norepinephrine</term>
</item>
<item>
<term>Epinephrine release</term>
</item>
<item>
<term>Chemiluminescence</term>
</item>
<item>
<term>Luminol</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-05-24">Modified</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/6520C72BF60FED028B4273112C889B3C8F083C1B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>NSM</jid>
<aid>2669</aid>
<ce:pii>S0165-0270(99)00079-5</ce:pii>
<ce:doi>10.1016/S0165-0270(99)00079-5</ce:doi>
<ce:copyright type="full-transfer" year="1999">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Maurice</ce:given-name>
<ce:surname>Israël</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Monique</ce:given-name>
<ce:surname>Tomasi</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="19" month="1" year="1999"></ce:date-received>
<ce:date-revised day="24" month="5" year="1999"></ce:date-revised>
<ce:date-accepted day="2" month="6" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A chemiluminescent procedure for measuring catecholamines (dopamine, norepinephrine, epinephrine) is described. It is based on the observation that lactoperoxidase catalyses both the oxidation of catecholamines, and the chemiluminescent reaction of luminol with their oxidation product. The assay has been adapted for continuously monitoring the release of catecholamines from adrenergic tissues, from cell suspensions and from cells loaded in culture with dopamine.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Catecholamine</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Dopamine</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Norepinephrine</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Epinephrine release</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Chemiluminescence</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Luminol</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maurice</namePart>
<namePart type="family">Israël</namePart>
<affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</affiliation>
<description>Corresponding author</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monique</namePart>
<namePart type="family">Tomasi</namePart>
<affiliation>Laboratoire de Neurobiologie, Cellulaire et Moléculaire, C.N.R.S., 91190 Gif-Sur-Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateModified encoding="w3cdtf">1999-05-24</dateModified>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">A chemiluminescent procedure for measuring catecholamines (dopamine, norepinephrine, epinephrine) is described. It is based on the observation that lactoperoxidase catalyses both the oxidation of catecholamines, and the chemiluminescent reaction of luminol with their oxidation product. The assay has been adapted for continuously monitoring the release of catecholamines from adrenergic tissues, from cell suspensions and from cells loaded in culture with dopamine.</abstract>
<note type="content">Fig. 1: Principle of the catecholamine-chemiluminescent assay. Lactoperoxidase catalyzes both the oxidation of catecholamines (dopamine, norepinephrine, epinephrine) and the chemiluminescent oxidation of luminol. It therefore displays a mixed oxidase-peroxidase function.</note>
<note type="content">Fig. 2: Dose response curves for dopamine and norepinephine. The reaction mixture, solution 1 containing lactoperoxidase and luminol (see Section 2), gives a chemiluminescent reaction when the catecholamine is added. Below the curves we show typical responses in the pmol range. The difference between the two curves depends of the batch of lactoperoxidase and solutions, it does not correspond to a specific distinction of the two catecholamines (bar=2 min).</note>
<note type="content">Fig. 3: Determination of the catecholamine content of biological extracts. The TCA ether-washed extract was also treated with chloroform and Triton as described in methods. The catecholamine content of the extract (striatum) is compared to standards (left) and to a blank treated exactly like the sample (bar=2 min). Table 1 gives the results of five experiments performed on different catecholamine containing tissues.</note>
<note type="content">Fig. 4: Catecholamine release from adrenal gland slices. Each mouse adrenal was cut into four slices washed in a large volume (400 ml) of mammalian Krebs. The slice was transferred in solution 1 (A) or 2 (B) and release elicited by KCl depolarization (60 mM) in the presence of calcium (2.5 mM). The proportion of lactoperoxidase and luminol are given in methods. Bottom traces are controls in the absence of calcium (C) or with 60 mM NaCl instead of KCl (D) (bar=2 min).</note>
<note type="content">Fig. 5: Catecholamine release from striatal microfragments. Striatal slices were forced with large volumes of mammalian Krebs through a rigid nylon gauze. The microfragments were allowed to sediment and concentrated in 2 ml for the striata from four mice. Top trace, catecholamine release (presumably dopamine) was triggered with KCl (45 mM) and calcium (2.5 mM). When release declined, two dopamine standards were injected. Bottom trace, control depolarization performed as above but in the absence of calcium (plus 0.7 μM EGTA), no release was measured. A dopamine standard was injected to check the efficiency of the reaction mixture. In both cases we used 10 μl of microfragments taken in the pellet (see Section 2). Release was performed in solution containing lactoperoxidase and luminol as described in Section 2 and Section 3 (bar=2 min).</note>
<note type="content">Fig. 6: Catecholamine release from dissociated adrenergic cell. In A, release was measured in saline solution 1 it was elicited by adding ionophore A23107 (1.2 μm) in the presence of 2.5 mM calcium (top trace). When calcium was reduced to 10 μM, release was clearly lower but not negligible (middle trace). The lower trace shows that a spontaneous leakage occurred even in the absence of ionophore. In B, release was measured in sucrose-Tris (solution 2) and was elicited as in A by the addition of ionophore in the presence of 2.5 mM calcium (top trace) or at 10 μM calcium (lower trace). In this solution, release appears to be negligible in low calcium. Spontaneous leakage was not measurable. The lactoperoxidase and luminol proportions are given in methods (bar=2 min).</note>
<note type="content">Fig. 7: Dopamine release from neuroblastoma cells loaded in culture with dopamine. Top: histochemical demonstration of dopamine in NG108-15 cells loaded in culture with dopamine (2 mM). The glyoxylic acid procedure gives a fluorescent compound with dopamine. Cells could be efficiently loaded with 2–10 mM dopamine. Bottom: dopamine release from loaded cells. NG108-15 cells were loaded with 10 mM dopamine added for 12 h to the culture. Cells from four confluent flasks were collected, washed at least four times in a saline solution and resuspended in 0.5 ml saline. Left: release was measured on 5 μl of cell suspension in solution 2 containing lactoperoxidase and luminol as described in methods. Release was triggered with calcium (1.6 mM) and A23187 (0.7 μM). Two dopamine standards were injected to calibrate release. Right: control, the dopamine loaded cells did not release in the absence of calcium (the mock NaCl injection replaced calcium). The standard shows that the reaction mixture would have detected any dopamine released (bar=2 min).</note>
<note type="content">Table 1: Catecholamine content of rat tissue extractsa</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Catecholamine</topic>
<topic>Dopamine</topic>
<topic>Norepinephrine</topic>
<topic>Epinephrine release</topic>
<topic>Chemiluminescence</topic>
<topic>Luminol</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Neuroscience Methods</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>NSM</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19990915</dateIssued>
</originInfo>
<identifier type="ISSN">0165-0270</identifier>
<identifier type="PII">S0165-0270(00)X0057-X</identifier>
<part>
<date>19990915</date>
<detail type="volume">
<number>91</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>164</end>
</extent>
<extent unit="pages">
<start>101</start>
<end>107</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">6520C72BF60FED028B4273112C889B3C8F083C1B</identifier>
<identifier type="DOI">10.1016/S0165-0270(99)00079-5</identifier>
<identifier type="PII">S0165-0270(99)00079-5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000806 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000806 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6520C72BF60FED028B4273112C889B3C8F083C1B
   |texte=   A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024