Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus.

Identifieur interne : 000973 ( PubMed/Corpus ); précédent : 000972; suivant : 000974

Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus.

Auteurs : Miguelmiguel Quiliano ; Hugo Valdivia-Olarte ; Carlos Olivares ; David Requena ; Andrés H. Gutiérrez ; Paola Reyes-Loyola ; Luis E. Tolentino-Lopez ; Patricia Sheen ; Ver Nica Briz ; Maria A. Mu Oz-Fernández ; José Correa-Basurto ; Mirko Zimic

Source :

RBID : pubmed:23930018

Abstract

The pandemic influenza AH1N1 (2009) caused an outbreak of human infection that spread to the world. Neuraminidase (NA) is an antigenic surface glycoprotein, which is essential to the influenza infection process, and is the target of anti-flu drugs oseltamivir and zanamivir. Currently, NA inhibitors are the pillar pharmacological strategy against seasonal and global influenza. Although mutations observed after NA-inhibitor treatment are characterized by changes in conserved amino acids of the enzyme catalytic site, it is possible that specific amino acid substitutions (AASs) distant from the active site such as H274Y, could confer oseltamivir or zanamivir resistance. To better understand the molecular distribution pattern of NA AASs, we analyzed NA AASs from all available reported pandemic AH1N1 NA sequences, including those reported from America, Africa, Asia, Europe, Oceania, and specifically from Mexico. The molecular distributions of the AASs were obtained at the secondary structure domain level for both the active and catalytic sites, and compared between geographic regions. Our results showed that NA AASs from America, Asia, Europe, Oceania and Mexico followed similar molecular distribution patterns. The compiled data of this study showed that highly conserved amino acids from the NA active site and catalytic site are indeed being affected by mutations. The reported NA AASs follow a similar molecular distribution pattern worldwide. Although most AASs are distributed distantly from the active site, this study shows the emergence of mutations affecting the previously conserved active and catalytic site. A significant number of unique AASs were reported simultaneously on different continents.

DOI: 10.6026/97320630009673
PubMed: 23930018

Links to Exploration step

pubmed:23930018

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus.</title>
<author>
<name sortKey="Quiliano, Miguelmiguel" sort="Quiliano, Miguelmiguel" uniqKey="Quiliano M" first="Miguelmiguel" last="Quiliano">Miguelmiguel Quiliano</name>
<affiliation>
<nlm:affiliation>Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru ; Drug R&D Unit, Center for Applied Pharmacobiology Research, University of Navarra, C/ Irunlarrea s/n, 31008, Pamplona, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Valdivia Olarte, Hugo" sort="Valdivia Olarte, Hugo" uniqKey="Valdivia Olarte H" first="Hugo" last="Valdivia-Olarte">Hugo Valdivia-Olarte</name>
</author>
<author>
<name sortKey="Olivares, Carlos" sort="Olivares, Carlos" uniqKey="Olivares C" first="Carlos" last="Olivares">Carlos Olivares</name>
</author>
<author>
<name sortKey="Requena, David" sort="Requena, David" uniqKey="Requena D" first="David" last="Requena">David Requena</name>
</author>
<author>
<name sortKey="Gutierrez, Andres H" sort="Gutierrez, Andres H" uniqKey="Gutierrez A" first="Andrés H" last="Gutiérrez">Andrés H. Gutiérrez</name>
</author>
<author>
<name sortKey="Reyes Loyola, Paola" sort="Reyes Loyola, Paola" uniqKey="Reyes Loyola P" first="Paola" last="Reyes-Loyola">Paola Reyes-Loyola</name>
</author>
<author>
<name sortKey="Tolentino Lopez, Luis E" sort="Tolentino Lopez, Luis E" uniqKey="Tolentino Lopez L" first="Luis E" last="Tolentino-Lopez">Luis E. Tolentino-Lopez</name>
</author>
<author>
<name sortKey="Sheen, Patricia" sort="Sheen, Patricia" uniqKey="Sheen P" first="Patricia" last="Sheen">Patricia Sheen</name>
</author>
<author>
<name sortKey="Briz, Ver Nica" sort="Briz, Ver Nica" uniqKey="Briz V" first="Ver Nica" last="Briz">Ver Nica Briz</name>
</author>
<author>
<name sortKey="Mu Oz Fernandez, Maria A" sort="Mu Oz Fernandez, Maria A" uniqKey="Mu Oz Fernandez M" first="Maria A" last="Mu Oz-Fernández">Maria A. Mu Oz-Fernández</name>
</author>
<author>
<name sortKey="Correa Basurto, Jose" sort="Correa Basurto, Jose" uniqKey="Correa Basurto J" first="José" last="Correa-Basurto">José Correa-Basurto</name>
</author>
<author>
<name sortKey="Zimic, Mirko" sort="Zimic, Mirko" uniqKey="Zimic M" first="Mirko" last="Zimic">Mirko Zimic</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23930018</idno>
<idno type="pmid">23930018</idno>
<idno type="doi">10.6026/97320630009673</idno>
<idno type="wicri:Area/PubMed/Corpus">000973</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000973</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus.</title>
<author>
<name sortKey="Quiliano, Miguelmiguel" sort="Quiliano, Miguelmiguel" uniqKey="Quiliano M" first="Miguelmiguel" last="Quiliano">Miguelmiguel Quiliano</name>
<affiliation>
<nlm:affiliation>Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru ; Drug R&D Unit, Center for Applied Pharmacobiology Research, University of Navarra, C/ Irunlarrea s/n, 31008, Pamplona, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Valdivia Olarte, Hugo" sort="Valdivia Olarte, Hugo" uniqKey="Valdivia Olarte H" first="Hugo" last="Valdivia-Olarte">Hugo Valdivia-Olarte</name>
</author>
<author>
<name sortKey="Olivares, Carlos" sort="Olivares, Carlos" uniqKey="Olivares C" first="Carlos" last="Olivares">Carlos Olivares</name>
</author>
<author>
<name sortKey="Requena, David" sort="Requena, David" uniqKey="Requena D" first="David" last="Requena">David Requena</name>
</author>
<author>
<name sortKey="Gutierrez, Andres H" sort="Gutierrez, Andres H" uniqKey="Gutierrez A" first="Andrés H" last="Gutiérrez">Andrés H. Gutiérrez</name>
</author>
<author>
<name sortKey="Reyes Loyola, Paola" sort="Reyes Loyola, Paola" uniqKey="Reyes Loyola P" first="Paola" last="Reyes-Loyola">Paola Reyes-Loyola</name>
</author>
<author>
<name sortKey="Tolentino Lopez, Luis E" sort="Tolentino Lopez, Luis E" uniqKey="Tolentino Lopez L" first="Luis E" last="Tolentino-Lopez">Luis E. Tolentino-Lopez</name>
</author>
<author>
<name sortKey="Sheen, Patricia" sort="Sheen, Patricia" uniqKey="Sheen P" first="Patricia" last="Sheen">Patricia Sheen</name>
</author>
<author>
<name sortKey="Briz, Ver Nica" sort="Briz, Ver Nica" uniqKey="Briz V" first="Ver Nica" last="Briz">Ver Nica Briz</name>
</author>
<author>
<name sortKey="Mu Oz Fernandez, Maria A" sort="Mu Oz Fernandez, Maria A" uniqKey="Mu Oz Fernandez M" first="Maria A" last="Mu Oz-Fernández">Maria A. Mu Oz-Fernández</name>
</author>
<author>
<name sortKey="Correa Basurto, Jose" sort="Correa Basurto, Jose" uniqKey="Correa Basurto J" first="José" last="Correa-Basurto">José Correa-Basurto</name>
</author>
<author>
<name sortKey="Zimic, Mirko" sort="Zimic, Mirko" uniqKey="Zimic M" first="Mirko" last="Zimic">Mirko Zimic</name>
</author>
</analytic>
<series>
<title level="j">Bioinformation</title>
<idno type="ISSN">0973-2063</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The pandemic influenza AH1N1 (2009) caused an outbreak of human infection that spread to the world. Neuraminidase (NA) is an antigenic surface glycoprotein, which is essential to the influenza infection process, and is the target of anti-flu drugs oseltamivir and zanamivir. Currently, NA inhibitors are the pillar pharmacological strategy against seasonal and global influenza. Although mutations observed after NA-inhibitor treatment are characterized by changes in conserved amino acids of the enzyme catalytic site, it is possible that specific amino acid substitutions (AASs) distant from the active site such as H274Y, could confer oseltamivir or zanamivir resistance. To better understand the molecular distribution pattern of NA AASs, we analyzed NA AASs from all available reported pandemic AH1N1 NA sequences, including those reported from America, Africa, Asia, Europe, Oceania, and specifically from Mexico. The molecular distributions of the AASs were obtained at the secondary structure domain level for both the active and catalytic sites, and compared between geographic regions. Our results showed that NA AASs from America, Asia, Europe, Oceania and Mexico followed similar molecular distribution patterns. The compiled data of this study showed that highly conserved amino acids from the NA active site and catalytic site are indeed being affected by mutations. The reported NA AASs follow a similar molecular distribution pattern worldwide. Although most AASs are distributed distantly from the active site, this study shows the emergence of mutations affecting the previously conserved active and catalytic site. A significant number of unique AASs were reported simultaneously on different continents. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23930018</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Print">0973-2063</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Bioinformation</Title>
<ISOAbbreviation>Bioinformation</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus.</ArticleTitle>
<Pagination>
<MedlinePgn>673-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.6026/97320630009673</ELocationID>
<Abstract>
<AbstractText>The pandemic influenza AH1N1 (2009) caused an outbreak of human infection that spread to the world. Neuraminidase (NA) is an antigenic surface glycoprotein, which is essential to the influenza infection process, and is the target of anti-flu drugs oseltamivir and zanamivir. Currently, NA inhibitors are the pillar pharmacological strategy against seasonal and global influenza. Although mutations observed after NA-inhibitor treatment are characterized by changes in conserved amino acids of the enzyme catalytic site, it is possible that specific amino acid substitutions (AASs) distant from the active site such as H274Y, could confer oseltamivir or zanamivir resistance. To better understand the molecular distribution pattern of NA AASs, we analyzed NA AASs from all available reported pandemic AH1N1 NA sequences, including those reported from America, Africa, Asia, Europe, Oceania, and specifically from Mexico. The molecular distributions of the AASs were obtained at the secondary structure domain level for both the active and catalytic sites, and compared between geographic regions. Our results showed that NA AASs from America, Asia, Europe, Oceania and Mexico followed similar molecular distribution patterns. The compiled data of this study showed that highly conserved amino acids from the NA active site and catalytic site are indeed being affected by mutations. The reported NA AASs follow a similar molecular distribution pattern worldwide. Although most AASs are distributed distantly from the active site, this study shows the emergence of mutations affecting the previously conserved active and catalytic site. A significant number of unique AASs were reported simultaneously on different continents. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Quiliano</LastName>
<ForeName>Miguelmiguel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru ; Drug R&D Unit, Center for Applied Pharmacobiology Research, University of Navarra, C/ Irunlarrea s/n, 31008, Pamplona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Valdivia-Olarte</LastName>
<ForeName>Hugo</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olivares</LastName>
<ForeName>Carlos</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Requena</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gutiérrez</LastName>
<ForeName>Andrés H</ForeName>
<Initials>AH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reyes-Loyola</LastName>
<ForeName>Paola</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tolentino-Lopez</LastName>
<ForeName>Luis E</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sheen</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Briz</LastName>
<ForeName>Verónica</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muñoz-Fernández</LastName>
<ForeName>Maria A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Correa-Basurto</LastName>
<ForeName>José</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zimic</LastName>
<ForeName>Mirko</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Singapore</Country>
<MedlineTA>Bioinformation</MedlineTA>
<NlmUniqueID>101258255</NlmUniqueID>
<ISSNLinking>0973-2063</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Geographic regions</Keyword>
<Keyword MajorTopicYN="N">Influenza</Keyword>
<Keyword MajorTopicYN="N">Molecular distribution pattern</Keyword>
<Keyword MajorTopicYN="N">Neuraminidase</Keyword>
<Keyword MajorTopicYN="N">Pandemic H1N1 (2009)</Keyword>
<Keyword MajorTopicYN="N">amino acid substitution</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23930018</ArticleId>
<ArticleId IdType="doi">10.6026/97320630009673</ArticleId>
<ArticleId IdType="pii">97320630009673</ArticleId>
<ArticleId IdType="pmc">PMC3732439</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Clin Virol. 2008 Jan;41(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2006 Oct;4(5):795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Oct;17(10):1266-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2010 Oct 15;51(8):983-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20858074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Sep;52(9):3284-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2012 Mar 22;11:77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22439637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D497-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2010 May;48(1):62-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2010 Oct;16(10):1576-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20218988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2008 May;80(5):895-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18360910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Chem Chemother. 1999 Jul;10(4):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(2):596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Feb;69(2):1099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7815489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Jul;50(7):2395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16801417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Health Geogr. 2010 Feb 24;9:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2009 Aug 27;1:RRN1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2000 Jul;47(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10930642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anim Health Res Rev. 2010 Jun;11(1):73-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20591214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2009;(189):111-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19048199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2010 Jul;4(4):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20836794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2011 Oct;52(2):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2010 Jun 7;7(3):894-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20420444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2010;15(2):203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):423-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2011 Feb;17(2):283-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21291607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2011 Mar;66(3):466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1585-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2011 Jul;11(5):803-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21382522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2011 Sep;5(5):299-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21668694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2007 Dec;6(12):967-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18049471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2009 May 20;4:18; discussion 18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 7;310(5745):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2010 Mar;10(2):346-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19963078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 26;453(7199):1258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18480754</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000973 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000973 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23930018
   |texte=   Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23930018" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021