Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.

Identifieur interne : 000411 ( PubMed/Checkpoint ); précédent : 000410; suivant : 000412

Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.

Auteurs : Nargesalsadat Dorratoltaj [États-Unis] ; Achla Marathe [États-Unis] ; Bryan L. Lewis [États-Unis] ; Samarth Swarup [États-Unis] ; Stephen G. Eubank [États-Unis] ; Kaja M. Abbas [États-Unis]

Source :

RBID : pubmed:28570660

Descripteurs français

English descriptors

Abstract

The study objective is to estimate the epidemiological and economic impact of vaccine interventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities. Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We simulated influenza pandemics in Chicago using agent-based transmission dynamic modeling. Population was distributed among high-risk and non-high risk among 0-19, 20-64 and 65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong (21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted. Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on investment. The risk of death is the highest among the high-risk 65+ years subpopulation in the catastrophic influenza pandemic, and highest among the high-risk 0-19 years subpopulation in the strong and moderate influenza pandemics. The proportion of total deaths and net benefits are the highest among the high-risk 20-64 years subpopulation in the catastrophic, strong and moderate influenza pandemics. The return on investment is the highest in the high-risk 0-19 years subpopulation in the catastrophic, strong and moderate influenza pandemics. Based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost saving for all age and risk groups. The attack rates among the children are higher than among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their larger social contact network and homophilous interactions in school. Based on return on investment and higher attack rates among children, we recommend prioritizing children (0-19 years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies.

DOI: 10.1371/journal.pcbi.1005521
PubMed: 28570660


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28570660

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.</title>
<author>
<name sortKey="Dorratoltaj, Nargesalsadat" sort="Dorratoltaj, Nargesalsadat" uniqKey="Dorratoltaj N" first="Nargesalsadat" last="Dorratoltaj">Nargesalsadat Dorratoltaj</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marathe, Achla" sort="Marathe, Achla" uniqKey="Marathe A" first="Achla" last="Marathe">Achla Marathe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Bryan L" sort="Lewis, Bryan L" uniqKey="Lewis B" first="Bryan L" last="Lewis">Bryan L. Lewis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swarup, Samarth" sort="Swarup, Samarth" uniqKey="Swarup S" first="Samarth" last="Swarup">Samarth Swarup</name>
<affiliation wicri:level="2">
<nlm:affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eubank, Stephen G" sort="Eubank, Stephen G" uniqKey="Eubank S" first="Stephen G" last="Eubank">Stephen G. Eubank</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abbas, Kaja M" sort="Abbas, Kaja M" uniqKey="Abbas K" first="Kaja M" last="Abbas">Kaja M. Abbas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28570660</idno>
<idno type="pmid">28570660</idno>
<idno type="doi">10.1371/journal.pcbi.1005521</idno>
<idno type="wicri:Area/PubMed/Corpus">000411</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000411</idno>
<idno type="wicri:Area/PubMed/Curation">000411</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000411</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000411</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000411</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.</title>
<author>
<name sortKey="Dorratoltaj, Nargesalsadat" sort="Dorratoltaj, Nargesalsadat" uniqKey="Dorratoltaj N" first="Nargesalsadat" last="Dorratoltaj">Nargesalsadat Dorratoltaj</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marathe, Achla" sort="Marathe, Achla" uniqKey="Marathe A" first="Achla" last="Marathe">Achla Marathe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Bryan L" sort="Lewis, Bryan L" uniqKey="Lewis B" first="Bryan L" last="Lewis">Bryan L. Lewis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swarup, Samarth" sort="Swarup, Samarth" uniqKey="Swarup S" first="Samarth" last="Swarup">Samarth Swarup</name>
<affiliation wicri:level="2">
<nlm:affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eubank, Stephen G" sort="Eubank, Stephen G" uniqKey="Eubank S" first="Stephen G" last="Eubank">Stephen G. Eubank</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abbas, Kaja M" sort="Abbas, Kaja M" uniqKey="Abbas K" first="Kaja M" last="Abbas">Kaja M. Abbas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Aged</term>
<term>Chicago (epidemiology)</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Computational Biology</term>
<term>Humans</term>
<term>Infant</term>
<term>Infant, Newborn</term>
<term>Influenza Vaccines</term>
<term>Influenza, Human (economics)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Middle Aged</term>
<term>Models, Statistical</term>
<term>Pandemics (prevention & control)</term>
<term>Pandemics (statistics & numerical data)</term>
<term>Vaccination (statistics & numerical data)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Biologie informatique</term>
<term>Chicago (épidémiologie)</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (économie)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Modèles statistiques</term>
<term>Nourrisson</term>
<term>Nouveau-né</term>
<term>Pandémies ()</term>
<term>Sujet âgé</term>
<term>Vaccination ()</term>
<term>Vaccins antigrippaux</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Influenza Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="economics" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Chicago</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
<term>Pandemics</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Pandemics</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="MESH" qualifier="économie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Chicago</term>
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Aged</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Computational Biology</term>
<term>Humans</term>
<term>Infant</term>
<term>Infant, Newborn</term>
<term>Middle Aged</term>
<term>Models, Statistical</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Biologie informatique</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Modèles statistiques</term>
<term>Nourrisson</term>
<term>Nouveau-né</term>
<term>Pandémies</term>
<term>Sujet âgé</term>
<term>Vaccination</term>
<term>Vaccins antigrippaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The study objective is to estimate the epidemiological and economic impact of vaccine interventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities. Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We simulated influenza pandemics in Chicago using agent-based transmission dynamic modeling. Population was distributed among high-risk and non-high risk among 0-19, 20-64 and 65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong (21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted. Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on investment. The risk of death is the highest among the high-risk 65+ years subpopulation in the catastrophic influenza pandemic, and highest among the high-risk 0-19 years subpopulation in the strong and moderate influenza pandemics. The proportion of total deaths and net benefits are the highest among the high-risk 20-64 years subpopulation in the catastrophic, strong and moderate influenza pandemics. The return on investment is the highest in the high-risk 0-19 years subpopulation in the catastrophic, strong and moderate influenza pandemics. Based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost saving for all age and risk groups. The attack rates among the children are higher than among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their larger social contact network and homophilous interactions in school. Based on return on investment and higher attack rates among children, we recommend prioritizing children (0-19 years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28570660</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.</ArticleTitle>
<Pagination>
<MedlinePgn>e1005521</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1005521</ELocationID>
<Abstract>
<AbstractText>The study objective is to estimate the epidemiological and economic impact of vaccine interventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities. Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We simulated influenza pandemics in Chicago using agent-based transmission dynamic modeling. Population was distributed among high-risk and non-high risk among 0-19, 20-64 and 65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong (21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted. Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on investment. The risk of death is the highest among the high-risk 65+ years subpopulation in the catastrophic influenza pandemic, and highest among the high-risk 0-19 years subpopulation in the strong and moderate influenza pandemics. The proportion of total deaths and net benefits are the highest among the high-risk 20-64 years subpopulation in the catastrophic, strong and moderate influenza pandemics. The return on investment is the highest in the high-risk 0-19 years subpopulation in the catastrophic, strong and moderate influenza pandemics. Based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost saving for all age and risk groups. The attack rates among the children are higher than among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their larger social contact network and homophilous interactions in school. Based on return on investment and higher attack rates among children, we recommend prioritizing children (0-19 years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dorratoltaj</LastName>
<ForeName>Nargesalsadat</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marathe</LastName>
<ForeName>Achla</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lewis</LastName>
<ForeName>Bryan L</ForeName>
<Initials>BL</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-0793-6082</Identifier>
<AffiliationInfo>
<Affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swarup</LastName>
<ForeName>Samarth</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eubank</LastName>
<ForeName>Stephen G</ForeName>
<Initials>SG</Initials>
<AffiliationInfo>
<Affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Network Dynamics and Simulation Science Lab, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abbas</LastName>
<ForeName>Kaja M</ForeName>
<Initials>KM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-0563-1576</Identifier>
<AffiliationInfo>
<Affiliation>Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM109718</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002641" MajorTopicYN="N">Chicago</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002675" MajorTopicYN="N">Child, Preschool</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007223" MajorTopicYN="N">Infant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007231" MajorTopicYN="N">Infant, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="Y">Influenza, Human</DescriptorName>
<QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28570660</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1005521</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-16-01440</ArticleId>
<ArticleId IdType="pmc">PMC5453424</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Intern Med. 2003 Apr 1;138(7):608; author reply 608-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2015 Aug 7;64(30):818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26247435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health Rep. 2009 Mar-Apr;124(2):193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19320359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 27;442(7101):448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1982 May;115(5):736-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7081204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e25149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2002 Aug 20;137(4):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Dec 1;202(11):1626-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21028955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Mar;19(3):439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Jan;19(1):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23260039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2012 Jan 5;30(2):289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22085547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Sep 7;28(39):6470-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2012 Aug;4(3):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22939310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2013 Nov 4;31(46):5339-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24055351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2000 Oct 4;284(13):1655-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 1994 Dec 15;121(12):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7978721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jun 28;25(27):5086-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Public Health. 2017 Feb;2(2):e74-e81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28299371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e22308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1976 Feb;103(2):152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">814808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Jul 12;28(31):4875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20483192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2000 Mar 17;18(18):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10699339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Oct;12(10):1548-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 27;11(5):e0155416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2008 Apr 1;167(7):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2014 Nov 1;180(9):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 19;8(6):e66312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Recomm Rep. 2009 Jul 31;58(RR-8):1-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Mar 12;3(3):e1790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18335060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatrics. 2009 Dec;124 Suppl 5:S499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2005 Jan 11;23(8):1004-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 31;10(7):e0132922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26230271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pediatr. 2005 Dec;147(6):807-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2015 May 1;60 Suppl 1:S20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25878298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2011 Jan 1;52 Suppl 1:S13-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1969;41(3):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5309469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2015 May 1;60 Suppl 1:S1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25878296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 1999 Sep-Oct;5(5):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16881729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Sep 25;325(5948):1705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19696313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2011 Mar;3(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21339828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2005 Jan 4;23(7):915-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15603893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2016 Aug 22;:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27545901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Dorratoltaj, Nargesalsadat" sort="Dorratoltaj, Nargesalsadat" uniqKey="Dorratoltaj N" first="Nargesalsadat" last="Dorratoltaj">Nargesalsadat Dorratoltaj</name>
</region>
<name sortKey="Abbas, Kaja M" sort="Abbas, Kaja M" uniqKey="Abbas K" first="Kaja M" last="Abbas">Kaja M. Abbas</name>
<name sortKey="Eubank, Stephen G" sort="Eubank, Stephen G" uniqKey="Eubank S" first="Stephen G" last="Eubank">Stephen G. Eubank</name>
<name sortKey="Lewis, Bryan L" sort="Lewis, Bryan L" uniqKey="Lewis B" first="Bryan L" last="Lewis">Bryan L. Lewis</name>
<name sortKey="Marathe, Achla" sort="Marathe, Achla" uniqKey="Marathe A" first="Achla" last="Marathe">Achla Marathe</name>
<name sortKey="Swarup, Samarth" sort="Swarup, Samarth" uniqKey="Swarup S" first="Samarth" last="Swarup">Samarth Swarup</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000411 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000411 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28570660
   |texte=   Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28570660" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021