Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An Epidemiological Network Model for Disease Outbreak Detection

Identifieur interne : 000E13 ( Pmc/Checkpoint ); précédent : 000E12; suivant : 000E14

An Epidemiological Network Model for Disease Outbreak Detection

Auteurs : Ben Y. Reis [États-Unis] ; Isaac S. Kohane [États-Unis] ; Kenneth D. Mandl [États-Unis]

Source :

RBID : PMC:1896205

Abstract

Background

Advanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most.

Methods and Findings

To address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach.

Conclusions

The integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events.


Url:
DOI: 10.1371/journal.pmed.0040210
PubMed: 17593895
PubMed Central: 1896205


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:1896205

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An Epidemiological Network Model for Disease Outbreak Detection</title>
<author>
<name sortKey="Reis, Ben Y" sort="Reis, Ben Y" uniqKey="Reis B" first="Ben Y" last="Reis">Ben Y. Reis</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohane, Isaac S" sort="Kohane, Isaac S" uniqKey="Kohane I" first="Isaac S" last="Kohane">Isaac S. Kohane</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mandl, Kenneth D" sort="Mandl, Kenneth D" uniqKey="Mandl K" first="Kenneth D" last="Mandl">Kenneth D. Mandl</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17593895</idno>
<idno type="pmc">1896205</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896205</idno>
<idno type="RBID">PMC:1896205</idno>
<idno type="doi">10.1371/journal.pmed.0040210</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000C29</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000C29</idno>
<idno type="wicri:Area/Pmc/Curation">000C29</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000C29</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000E13</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000E13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">An Epidemiological Network Model for Disease Outbreak Detection</title>
<author>
<name sortKey="Reis, Ben Y" sort="Reis, Ben Y" uniqKey="Reis B" first="Ben Y" last="Reis">Ben Y. Reis</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohane, Isaac S" sort="Kohane, Isaac S" uniqKey="Kohane I" first="Isaac S" last="Kohane">Isaac S. Kohane</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mandl, Kenneth D" sort="Mandl, Kenneth D" uniqKey="Mandl K" first="Kenneth D" last="Mandl">Kenneth D. Mandl</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Medicine</title>
<idno type="ISSN">1549-1277</idno>
<idno type="eISSN">1549-1676</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Background</title>
<p>Advanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most.</p>
</sec>
<sec id="st2">
<title>Methods and Findings</title>
<p>To address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach.</p>
</sec>
<sec id="st3">
<title>Conclusions</title>
<p>The integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
<author>
<name sortKey="Nizam, A" uniqKey="Nizam A">A Nizam</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S Xu</name>
</author>
<author>
<name sortKey="Ungchusak, K" uniqKey="Ungchusak K">K Ungchusak</name>
</author>
<author>
<name sortKey="Hanshaoworakul, W" uniqKey="Hanshaoworakul W">W Hanshaoworakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brookmeyer, R" uniqKey="Brookmeyer R">R Brookmeyer</name>
</author>
<author>
<name sortKey="Johnson, E" uniqKey="Johnson E">E Johnson</name>
</author>
<author>
<name sortKey="Bollinger, R" uniqKey="Bollinger R">R Bollinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mills, Ce" uniqKey="Mills C">CE Mills</name>
</author>
<author>
<name sortKey="Robins, Jm" uniqKey="Robins J">JM Robins</name>
</author>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, B" uniqKey="Miller B">B Miller</name>
</author>
<author>
<name sortKey="Kassenborg, H" uniqKey="Kassenborg H">H Kassenborg</name>
</author>
<author>
<name sortKey="Dunsmuir, W" uniqKey="Dunsmuir W">W Dunsmuir</name>
</author>
<author>
<name sortKey="Griffith, J" uniqKey="Griffith J">J Griffith</name>
</author>
<author>
<name sortKey="Hadidi, M" uniqKey="Hadidi M">M Hadidi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schrag, Sj" uniqKey="Schrag S">SJ Schrag</name>
</author>
<author>
<name sortKey="Brooks, Jt" uniqKey="Brooks J">JT Brooks</name>
</author>
<author>
<name sortKey="Van Beneden, C" uniqKey="Van Beneden C">C Van Beneden</name>
</author>
<author>
<name sortKey="Parashar, Ud" uniqKey="Parashar U">UD Parashar</name>
</author>
<author>
<name sortKey="Griffin, Pm" uniqKey="Griffin P">PM Griffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Keeling, Mj" uniqKey="Keeling M">MJ Keeling</name>
</author>
<author>
<name sortKey="Edmunds, Wj" uniqKey="Edmunds W">WJ Edmunds</name>
</author>
<author>
<name sortKey="Gani, R" uniqKey="Gani R">R Gani</name>
</author>
<author>
<name sortKey="Grenfell, Bt" uniqKey="Grenfell B">BT Grenfell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bravata, Dm" uniqKey="Bravata D">DM Bravata</name>
</author>
<author>
<name sortKey="Mcdonald, Km" uniqKey="Mcdonald K">KM McDonald</name>
</author>
<author>
<name sortKey="Smith, Wm" uniqKey="Smith W">WM Smith</name>
</author>
<author>
<name sortKey="Rydzak, C" uniqKey="Rydzak C">C Rydzak</name>
</author>
<author>
<name sortKey="Szeto, H" uniqKey="Szeto H">H Szeto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandl, Kd" uniqKey="Mandl K">KD Mandl</name>
</author>
<author>
<name sortKey="Overhage, Jm" uniqKey="Overhage J">JM Overhage</name>
</author>
<author>
<name sortKey="Wagner, Mm" uniqKey="Wagner M">MM Wagner</name>
</author>
<author>
<name sortKey="Lober, Wb" uniqKey="Lober W">WB Lober</name>
</author>
<author>
<name sortKey="Sebastiani, P" uniqKey="Sebastiani P">P Sebastiani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagner, Mm" uniqKey="Wagner M">MM Wagner</name>
</author>
<author>
<name sortKey="Tsui, Fc" uniqKey="Tsui F">FC Tsui</name>
</author>
<author>
<name sortKey="Espino, J" uniqKey="Espino J">J Espino</name>
</author>
<author>
<name sortKey="Hogan, W" uniqKey="Hogan W">W Hogan</name>
</author>
<author>
<name sortKey="Hutman, J" uniqKey="Hutman J">J Hutman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hutwagner, Lc" uniqKey="Hutwagner L">LC Hutwagner</name>
</author>
<author>
<name sortKey="Maloney, Ek" uniqKey="Maloney E">EK Maloney</name>
</author>
<author>
<name sortKey="Bean, Nh" uniqKey="Bean N">NH Bean</name>
</author>
<author>
<name sortKey="Slutsker, L" uniqKey="Slutsker L">L Slutsker</name>
</author>
<author>
<name sortKey="Martin, Sm" uniqKey="Martin S">SM Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, Jtf" uniqKey="Lau J">JTF Lau</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
<author>
<name sortKey="Pang, E" uniqKey="Pang E">E Pang</name>
</author>
<author>
<name sortKey="Tsui, Hy" uniqKey="Tsui H">HY Tsui</name>
</author>
<author>
<name sortKey="Wong, E" uniqKey="Wong E">E Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodward, G" uniqKey="Woodward G">G Woodward</name>
</author>
<author>
<name sortKey="Stukel, T" uniqKey="Stukel T">T Stukel</name>
</author>
<author>
<name sortKey="Schull, M" uniqKey="Schull M">M Schull</name>
</author>
<author>
<name sortKey="Gunraj, N" uniqKey="Gunraj N">N Gunraj</name>
</author>
<author>
<name sortKey="Laupacis, A" uniqKey="Laupacis A">A Laupacis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wetterhall, Sf" uniqKey="Wetterhall S">SF Wetterhall</name>
</author>
<author>
<name sortKey="Coulombier, Dm" uniqKey="Coulombier D">DM Coulombier</name>
</author>
<author>
<name sortKey="Herndon, Jm" uniqKey="Herndon J">JM Herndon</name>
</author>
<author>
<name sortKey="Zaza, S" uniqKey="Zaza S">S Zaza</name>
</author>
<author>
<name sortKey="Cantwell, Jd" uniqKey="Cantwell J">JD Cantwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dafni, Ug" uniqKey="Dafni U">UG Dafni</name>
</author>
<author>
<name sortKey="Tsiodras, S" uniqKey="Tsiodras S">S Tsiodras</name>
</author>
<author>
<name sortKey="Panagiotakos, D" uniqKey="Panagiotakos D">D Panagiotakos</name>
</author>
<author>
<name sortKey="Gkolfinopoulou, K" uniqKey="Gkolfinopoulou K">K Gkolfinopoulou</name>
</author>
<author>
<name sortKey="Kouvatseas, G" uniqKey="Kouvatseas G">G Kouvatseas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradley, Ca" uniqKey="Bradley C">CA Bradley</name>
</author>
<author>
<name sortKey="Rolka, H" uniqKey="Rolka H">H Rolka</name>
</author>
<author>
<name sortKey="Walker, D" uniqKey="Walker D">D Walker</name>
</author>
<author>
<name sortKey="Loonsk, J" uniqKey="Loonsk J">J Loonsk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reis, By" uniqKey="Reis B">BY Reis</name>
</author>
<author>
<name sortKey="Mandl, Kd" uniqKey="Mandl K">KD Mandl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reis, By" uniqKey="Reis B">BY Reis</name>
</author>
<author>
<name sortKey="Pagano, M" uniqKey="Pagano M">M Pagano</name>
</author>
<author>
<name sortKey="Mandl, Kd" uniqKey="Mandl K">KD Mandl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandl, Kd" uniqKey="Mandl K">KD Mandl</name>
</author>
<author>
<name sortKey="Reis, B" uniqKey="Reis B">B Reis</name>
</author>
<author>
<name sortKey="Cassa, C" uniqKey="Cassa C">C Cassa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sartwell, Pe" uniqKey="Sartwell P">PE Sartwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knight, J" uniqKey="Knight J">J Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, Dl" uniqKey="Cooper D">DL Cooper</name>
</author>
<author>
<name sortKey="Verlander, Nq" uniqKey="Verlander N">NQ Verlander</name>
</author>
<author>
<name sortKey="Smith, Ge" uniqKey="Smith G">GE Smith</name>
</author>
<author>
<name sortKey="Charlett, A" uniqKey="Charlett A">A Charlett</name>
</author>
<author>
<name sortKey="Gerard, E" uniqKey="Gerard E">E Gerard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulldorff, M" uniqKey="Kulldorff M">M Kulldorff</name>
</author>
<author>
<name sortKey="Heffernan, R" uniqKey="Heffernan R">R Heffernan</name>
</author>
<author>
<name sortKey="Hartman, J" uniqKey="Hartman J">J Hartman</name>
</author>
<author>
<name sortKey="Assuncao, R" uniqKey="Assuncao R">R Assunção</name>
</author>
<author>
<name sortKey="Mostashari, F" uniqKey="Mostashari F">F Mostashari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heffernan, R" uniqKey="Heffernan R">R Heffernan</name>
</author>
<author>
<name sortKey="Mostashari, F" uniqKey="Mostashari F">F Mostashari</name>
</author>
<author>
<name sortKey="Das, D" uniqKey="Das D">D Das</name>
</author>
<author>
<name sortKey="Karpati, A" uniqKey="Karpati A">A Karpati</name>
</author>
<author>
<name sortKey="Kulldorff, M" uniqKey="Kulldorff M">M Kulldorff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, D" uniqKey="Das D">D Das</name>
</author>
<author>
<name sortKey="Mostashari, F" uniqKey="Mostashari F">F Mostashari</name>
</author>
<author>
<name sortKey="Weiss, D" uniqKey="Weiss D">D Weiss</name>
</author>
<author>
<name sortKey="Balter, S" uniqKey="Balter S">S Balter</name>
</author>
<author>
<name sortKey="Heffernan, R" uniqKey="Heffernan R">R Heffernan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buckeridge, Dl" uniqKey="Buckeridge D">DL Buckeridge</name>
</author>
<author>
<name sortKey="Burkom, H" uniqKey="Burkom H">H Burkom</name>
</author>
<author>
<name sortKey="Campbell, M" uniqKey="Campbell M">M Campbell</name>
</author>
<author>
<name sortKey="Hogan, Wr" uniqKey="Hogan W">WR Hogan</name>
</author>
<author>
<name sortKey="Moore, Aw" uniqKey="Moore A">AW Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reis, By" uniqKey="Reis B">BY Reis</name>
</author>
<author>
<name sortKey="Mandl, Kd" uniqKey="Mandl K">KD Mandl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burkom, Hs" uniqKey="Burkom H">HS Burkom</name>
</author>
<author>
<name sortKey="Murphy, S" uniqKey="Murphy S">S Murphy</name>
</author>
<author>
<name sortKey="Coberly, J" uniqKey="Coberly J">J Coberly</name>
</author>
<author>
<name sortKey="Hurt Mullen, K" uniqKey="Hurt Mullen K">K Hurt-Mullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozonoff, A" uniqKey="Ozonoff A">A Ozonoff</name>
</author>
<author>
<name sortKey="Forsberg, L" uniqKey="Forsberg L">L Forsberg</name>
</author>
<author>
<name sortKey="Bonetti, M" uniqKey="Bonetti M">M Bonetti</name>
</author>
<author>
<name sortKey="Pagano, M" uniqKey="Pagano M">M Pagano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brownstein, Js" uniqKey="Brownstein J">JS Brownstein</name>
</author>
<author>
<name sortKey="Kleinman, Kp" uniqKey="Kleinman K">KP Kleinman</name>
</author>
<author>
<name sortKey="Mandl, Kd" uniqKey="Mandl K">KD Mandl</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Med</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Med</journal-id>
<journal-id journal-id-type="publisher-id">pmed</journal-id>
<journal-id journal-id-type="publisher-id">plme</journal-id>
<journal-id journal-id-type="pmc">plosmed</journal-id>
<journal-title-group>
<journal-title>PLoS Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1549-1277</issn>
<issn pub-type="epub">1549-1676</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17593895</article-id>
<article-id pub-id-type="pmc">1896205</article-id>
<article-id pub-id-type="doi">10.1371/journal.pmed.0040210</article-id>
<article-id pub-id-type="publisher-id">06-PLME-RA-0465R3</article-id>
<article-id pub-id-type="sici">plme-04-06-18</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline">
<subject>Critical Care and Emergency Medicine</subject>
<subject>Non-Clinical Medicine</subject>
<subject>Public Health and Epidemiology</subject>
</subj-group>
<subj-group subj-group-type="System Taxonomy">
<subject>Critical Care / Intensive Care</subject>
<subject>Epidemiology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>An Epidemiological Network Model for Disease Outbreak Detection</article-title>
<alt-title alt-title-type="running-head">Epidemiological Monitoring Networks</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Reis</surname>
<given-names>Ben Y</given-names>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kohane</surname>
<given-names>Isaac S</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mandl</surname>
<given-names>Kenneth D</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Meyers</surname>
<given-names>Lauren Ancel</given-names>
</name>
<role>Academic Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">University of Texas at Austin, United States of America</aff>
<author-notes>
<corresp id="cor1">* To whom correspondence should be addressed. E-mail:
<email>ben_reis@harvard.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>6</month>
<year>2007</year>
</pub-date>
<pub-date pub-type="epub">
<day>26</day>
<month>6</month>
<year>2007</year>
</pub-date>
<volume>4</volume>
<issue>6</issue>
<elocation-id>e210</elocation-id>
<history>
<date date-type="received">
<day>22</day>
<month>6</month>
<year>2006</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>5</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>: © 2007 Reis et al.</copyright-statement>
<copyright-year>2007</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<sec id="st1">
<title>Background</title>
<p>Advanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most.</p>
</sec>
<sec id="st2">
<title>Methods and Findings</title>
<p>To address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach.</p>
</sec>
<sec id="st3">
<title>Conclusions</title>
<p>The integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events.</p>
</sec>
</abstract>
<abstract abstract-type="toc">
<p>Most surveillance systems are not robust to shifts in health care utilization. Ben Reis and colleagues developed network models that detected localized outbreaks better and were more robust to unpredictable shifts.</p>
</abstract>
<abstract abstract-type="editor">
<title>Editors' Summary</title>
<sec id="sb1a">
<title>Background.</title>
<p>The main task of public-health officials is to promote health in communities around the world. To do this, they need to monitor human health continually, so that any outbreaks (epidemics) of infectious diseases (particularly global epidemics or pandemics) or any bioterrorist attacks can be detected and dealt with quickly. In recent years, advanced disease-surveillance systems have been introduced that analyze data on hospital visits, purchases of drugs, and the use of laboratory tests to look for tell-tale signs of disease outbreaks. These surveillance systems work by comparing current data on the use of health-care resources with historical data or by identifying sudden increases in the use of these resources. So, for example, more doctors asking for tests for salmonella than in the past might presage an outbreak of food poisoning, and a sudden rise in people buying over-the-counter flu remedies might indicate the start of an influenza pandemic.</p>
</sec>
<sec id="sb1b">
<title>Why Was This Study Done?</title>
<p>Existing disease-surveillance systems don't always detect disease outbreaks, particularly in situations where there are shifts in the baseline patterns of health-care use. For example, during an epidemic, people might stay away from hospitals because of the fear of becoming infected, whereas after a suspected bioterrorist attack with an infectious agent, hospitals might be flooded with “worried well” (healthy people who think they have been exposed to the agent). Baseline shifts like these might prevent the detection of increased illness caused by the epidemic or the bioterrorist attack. Localized population surges associated with major public events (for example, the Olympics) are also likely to reduce the ability of existing surveillance systems to detect infectious disease outbreaks. In this study, the researchers developed a new class of surveillance systems called “epidemiological network models.” These systems aim to improve the detection of disease outbreaks by monitoring fluctuations in the relationships between information detailing the use of various health-care resources over time (data streams).</p>
</sec>
<sec id="sb1c">
<title>What Did the Researchers Do and Find?</title>
<p>The researchers used data collected over a 3-y period from five Boston hospitals on visits for respiratory (breathing) problems and for gastrointestinal (stomach and gut) problems, and on total visits (15 data streams in total), to construct a network model that included all the possible pair-wise comparisons between the data streams. They tested this model by comparing its ability to detect simulated disease outbreaks implanted into data collected over an additional year with that of a reference model based on individual data streams. The network approach, they report, was better at detecting localized outbreaks of respiratory and gastrointestinal disease than the reference approach. To investigate how well the network model dealt with baseline shifts in the use of health-care resources, the researchers then added in a large population surge. The detection performance of the reference model decreased in this test, but the performance of the complete network model and of models that included relationships between only some of the data streams remained stable. Finally, the researchers tested what would happen in a situation where there were large numbers of “worried well.” Again, the network models detected disease outbreaks consistently better than the reference model.</p>
</sec>
<sec id="sb1d">
<title>What Do These Findings Mean?</title>
<p>These findings suggest that epidemiological network systems that monitor the relationships between health-care resource-utilization data streams might detect disease outbreaks better than current systems under normal conditions and might be less affected by unpredictable shifts in the baseline data. However, because the tests of the new class of surveillance system reported here used simulated infectious disease outbreaks and baseline shifts, the network models may behave differently in real-life situations or if built using data from other hospitals. Nevertheless, these findings strongly suggest that public-health officials, provided they have sufficient computer power at their disposal, might improve their ability to detect disease outbreaks by using epidemiological network systems alongside their current disease-surveillance systems.</p>
</sec>
<sec id="sb1e">
<title>Additional Information.</title>
<p>Please access these Web sites via the online version of this summary at
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pmed.0040210">http://dx.doi.org/10.1371/journal.pmed.0040210</ext-link>
.</p>
<list list-type="bullet">
<list-item>
<p>Wikipedia pages on
<ext-link ext-link-type="uri" xlink:href="http://en.wikipedia.org/wiki/Public_health">public health</ext-link>
(note that Wikipedia is a free online encyclopedia that anyone can edit, and is available in several languages)</p>
</list-item>
<list-item>
<p>A brief description from the World Health Organization of
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/immunization_monitoring/burden/routine_surveillance">public-health surveillance</ext-link>
(in English, French, Spanish, Russian, Arabic, and Chinese)</p>
</list-item>
<list-item>
<p>A detailed report from the US Centers for Disease Control and Prevention called
<ext-link ext-link-type="uri" xlink:href="http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5305a1.htm">“Framework for Evaluating Public Health Surveillance Systems for the Early Detection of Outbreaks”</ext-link>
</p>
</list-item>
<list-item>
<p>The
<ext-link ext-link-type="uri" xlink:href="http://www.syndromic.org">International Society for Disease Surveillance</ext-link>
Web site</p>
</list-item>
</list>
</sec>
</abstract>
<counts>
<page-count count="13"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>citation</meta-name>
<meta-value>Reis BY, Kohane IS, Mandl KD (2007) An epidemiological network model for disease outbreak detection. PLoS Med 4(6): e210. doi:
<ext-link ext-link-type="doi" xlink:href="10.1371/journal.pmed.0040210">10.1371/journal.pmed.0040210</ext-link>
</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Reis, Ben Y" sort="Reis, Ben Y" uniqKey="Reis B" first="Ben Y" last="Reis">Ben Y. Reis</name>
</region>
<name sortKey="Kohane, Isaac S" sort="Kohane, Isaac S" uniqKey="Kohane I" first="Isaac S" last="Kohane">Isaac S. Kohane</name>
<name sortKey="Mandl, Kenneth D" sort="Mandl, Kenneth D" uniqKey="Mandl K" first="Kenneth D" last="Mandl">Kenneth D. Mandl</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000E13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:1896205
   |texte=   An Epidemiological Network Model for Disease Outbreak Detection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:17593895" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021