Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sex-based Biology and the Rational Design of Influenza Vaccination Strategies

Identifieur interne : 001D84 ( PascalFrancis/Curation ); précédent : 001D83; suivant : 001D85

Sex-based Biology and the Rational Design of Influenza Vaccination Strategies

Auteurs : Sabra L. Klein [États-Unis] ; Andrew Pekosz [États-Unis]

Source :

RBID : Pascal:14-0233982

Descripteurs français

English descriptors

Abstract

Biological (ie, sex) differences as well as cultural (ie, gender) norms influence the acceptance and efficacy of vaccines for males and females. These differences are often overlooked in the design and implementation of vaccination strategies. Using seasonal and pandemic influenza vaccines, we document profound differences between the sexes in the acceptance, correlates of protection, and adverse reactions following vaccination in both young and older adults. Females develop higher antibody responses, experience more adverse reactions to influenza vaccines, and show greater vaccine efficacy than males. Despite greater vaccine efficacy in females, both young and older females are often less likely to accept influenza vaccines than their male counterparts. Identification of the biological mechanisms, including the hormones and genes, that underlie differential responses to vaccination is necessary. We propose that vaccines should be matched to an individual's biological sex, which could involve systematically tailoring diverse types of FDA-approved influenza vaccines separately for males and females. One goal for vaccines designed to protect against influenza and even other infectious diseases should be to increase the correlates of protection in males and reduce adverse reactions in females in an effort to increase acceptance and vaccine-induced protection in both sexes.
pA  
A01 01  1    @0 0022-1899
A02 01      @0 JIDIAQ
A03   1    @0 J. infect. dis.
A05       @2 209
A06       @3 SUP3
A08 01  1  ENG  @1 Sex-based Biology and the Rational Design of Influenza Vaccination Strategies
A09 01  1  ENG  @1 Sex Differences in the Manifestations of Infectious Diseases
A11 01  1    @1 KLEIN (Sabra L.)
A11 02  1    @1 PEKOSZ (Andrew)
A12 01  1    @1 ALTFELD (Marcus) @9 ed.
A14 01      @1 W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health @2 Baltimore, Maryland @3 USA @Z 1 aut. @Z 2 aut.
A15 01      @1 Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology @2 Hamburg @3 DEU @Z 1 aut.
A15 02      @1 Massachusetts Institute of Technology and Harvard, Ragon Institute of Massachusetts General Hospital @2 Boston @3 USA @Z 1 aut.
A20       @2 S114-S119
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 2052 @5 354000504802690060
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 14-0233982
A60       @1 P
A61       @0 A
A64 01  1    @0 The Journal of infectious diseases
A66 01      @0 GBR
C01 01    ENG  @0 Biological (ie, sex) differences as well as cultural (ie, gender) norms influence the acceptance and efficacy of vaccines for males and females. These differences are often overlooked in the design and implementation of vaccination strategies. Using seasonal and pandemic influenza vaccines, we document profound differences between the sexes in the acceptance, correlates of protection, and adverse reactions following vaccination in both young and older adults. Females develop higher antibody responses, experience more adverse reactions to influenza vaccines, and show greater vaccine efficacy than males. Despite greater vaccine efficacy in females, both young and older females are often less likely to accept influenza vaccines than their male counterparts. Identification of the biological mechanisms, including the hormones and genes, that underlie differential responses to vaccination is necessary. We propose that vaccines should be matched to an individual's biological sex, which could involve systematically tailoring diverse types of FDA-approved influenza vaccines separately for males and females. One goal for vaccines designed to protect against influenza and even other infectious diseases should be to increase the correlates of protection in males and reduce adverse reactions in females in an effort to increase acceptance and vaccine-induced protection in both sexes.
C02 01  X    @0 002A05
C02 02  X    @0 002B05
C03 01  X  FRE  @0 Sexe @5 05
C03 01  X  ENG  @0 Sex @5 05
C03 01  X  SPA  @0 Sexo @5 05
C03 02  X  FRE  @0 Vaccination @5 06
C03 02  X  ENG  @0 Vaccination @5 06
C03 02  X  SPA  @0 Vacunación @5 06
C03 03  X  FRE  @0 Infection @5 07
C03 03  X  ENG  @0 Infection @5 07
C03 03  X  SPA  @0 Infección @5 07
C03 04  X  FRE  @0 Grippe @5 14
C03 04  X  ENG  @0 Influenza @5 14
C03 04  X  SPA  @0 Gripe @5 14
C07 01  X  FRE  @0 Virose
C07 01  X  ENG  @0 Viral disease
C07 01  X  SPA  @0 Virosis
N21       @1 279
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0233982

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sex-based Biology and the Rational Design of Influenza Vaccination Strategies</title>
<author>
<name sortKey="Klein, Sabra L" sort="Klein, Sabra L" uniqKey="Klein S" first="Sabra L." last="Klein">Sabra L. Klein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Pekosz, Andrew" sort="Pekosz, Andrew" uniqKey="Pekosz A" first="Andrew" last="Pekosz">Andrew Pekosz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0233982</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0233982 INIST</idno>
<idno type="RBID">Pascal:14-0233982</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000035</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001D84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Sex-based Biology and the Rational Design of Influenza Vaccination Strategies</title>
<author>
<name sortKey="Klein, Sabra L" sort="Klein, Sabra L" uniqKey="Klein S" first="Sabra L." last="Klein">Sabra L. Klein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Pekosz, Andrew" sort="Pekosz, Andrew" uniqKey="Pekosz A" first="Andrew" last="Pekosz">Andrew Pekosz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">The Journal of infectious diseases</title>
<title level="j" type="abbreviated">J. infect. dis.</title>
<idno type="ISSN">0022-1899</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">The Journal of infectious diseases</title>
<title level="j" type="abbreviated">J. infect. dis.</title>
<idno type="ISSN">0022-1899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Infection</term>
<term>Influenza</term>
<term>Sex</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Sexe</term>
<term>Vaccination</term>
<term>Infection</term>
<term>Grippe</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Vaccination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biological (ie, sex) differences as well as cultural (ie, gender) norms influence the acceptance and efficacy of vaccines for males and females. These differences are often overlooked in the design and implementation of vaccination strategies. Using seasonal and pandemic influenza vaccines, we document profound differences between the sexes in the acceptance, correlates of protection, and adverse reactions following vaccination in both young and older adults. Females develop higher antibody responses, experience more adverse reactions to influenza vaccines, and show greater vaccine efficacy than males. Despite greater vaccine efficacy in females, both young and older females are often less likely to accept influenza vaccines than their male counterparts. Identification of the biological mechanisms, including the hormones and genes, that underlie differential responses to vaccination is necessary. We propose that vaccines should be matched to an individual's biological sex, which could involve systematically tailoring diverse types of FDA-approved influenza vaccines separately for males and females. One goal for vaccines designed to protect against influenza and even other infectious diseases should be to increase the correlates of protection in males and reduce adverse reactions in females in an effort to increase acceptance and vaccine-induced protection in both sexes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1899</s0>
</fA01>
<fA02 i1="01">
<s0>JIDIAQ</s0>
</fA02>
<fA03 i2="1">
<s0>J. infect. dis.</s0>
</fA03>
<fA05>
<s2>209</s2>
</fA05>
<fA06>
<s3>SUP3</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sex-based Biology and the Rational Design of Influenza Vaccination Strategies</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Sex Differences in the Manifestations of Infectious Diseases</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KLEIN (Sabra L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PEKOSZ (Andrew)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ALTFELD (Marcus)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Massachusetts Institute of Technology and Harvard, Ragon Institute of Massachusetts General Hospital</s1>
<s2>Boston</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s2>S114-S119</s2>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2052</s2>
<s5>354000504802690060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0233982</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>The Journal of infectious diseases</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Biological (ie, sex) differences as well as cultural (ie, gender) norms influence the acceptance and efficacy of vaccines for males and females. These differences are often overlooked in the design and implementation of vaccination strategies. Using seasonal and pandemic influenza vaccines, we document profound differences between the sexes in the acceptance, correlates of protection, and adverse reactions following vaccination in both young and older adults. Females develop higher antibody responses, experience more adverse reactions to influenza vaccines, and show greater vaccine efficacy than males. Despite greater vaccine efficacy in females, both young and older females are often less likely to accept influenza vaccines than their male counterparts. Identification of the biological mechanisms, including the hormones and genes, that underlie differential responses to vaccination is necessary. We propose that vaccines should be matched to an individual's biological sex, which could involve systematically tailoring diverse types of FDA-approved influenza vaccines separately for males and females. One goal for vaccines designed to protect against influenza and even other infectious diseases should be to increase the correlates of protection in males and reduce adverse reactions in females in an effort to increase acceptance and vaccine-induced protection in both sexes.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Sexe</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Sex</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sexo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Vaccination</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Vaccination</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Vacunación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Infection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Infection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Infección</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Grippe</s0>
<s5>14</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Influenza</s0>
<s5>14</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Gripe</s0>
<s5>14</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fN21>
<s1>279</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 001D84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0233982
   |texte=   Sex-based Biology and the Rational Design of Influenza Vaccination Strategies
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021