Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach

Identifieur interne : 000012 ( PascalFrancis/Corpus ); précédent : 000011; suivant : 000013

Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach

Auteurs : Camille Pelat ; Neil M. Ferguson ; Peter J. White ; Carrie Reed ; Lyn Finelli ; Simon Cauchemez ; Christophe Fraser

Source :

RBID : Pascal:15-0008688

Descripteurs français

English descriptors

Abstract

In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0002-9262
A02 01      @0 AJEPAS
A03   1    @0 Am. j. epidemiol.
A05       @2 180
A06       @2 10
A08 01  1  ENG  @1 Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach
A11 01  1    @1 PELAT (Camille)
A11 02  1    @1 FERGUSON (Neil M.)
A11 03  1    @1 WHITE (Peter J.)
A11 04  1    @1 REED (Carrie)
A11 05  1    @1 FINELLI (Lyn)
A11 06  1    @1 CAUCHEMEZ (Simon)
A11 07  1    @1 FRASER (Christophe)
A14 01      @1 MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London @2 London @3 GBR @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 Modelling and Economics Unit, Public Health England @2 London @3 GBR @Z 3 aut.
A14 03      @1 Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention @2 Atlanta, Georgia @3 USA @Z 4 aut. @Z 5 aut.
A14 04      @1 Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur @2 Paris @3 FRA @Z 6 aut.
A20       @1 1036-1046
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 663 @5 354000502527180090
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 15-0008688
A60       @1 P
A61       @0 A
A64 01  1    @0 American journal of epidemiology
A66 01      @0 USA
C01 01    ENG  @0 In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.
C02 01  X    @0 002B30A01A1
C02 02  X    @0 002B05C02C
C03 01  X  FRE  @0 Maladie émergente @2 NM @5 01
C03 01  X  ENG  @0 Emerging disease @2 NM @5 01
C03 01  X  SPA  @0 Enfermedad emergente @2 NM @5 01
C03 02  X  FRE  @0 Infection @5 02
C03 02  X  ENG  @0 Infection @5 02
C03 02  X  SPA  @0 Infección @5 02
C03 03  X  FRE  @0 Méthodologie @5 07
C03 03  X  ENG  @0 Methodology @5 07
C03 03  X  SPA  @0 Metodología @5 07
C03 04  X  FRE  @0 Surveillance sanitaire @5 08
C03 04  X  ENG  @0 Sanitary surveillance @5 08
C03 04  X  SPA  @0 Vigilancia sanitaria @5 08
C03 05  X  FRE  @0 Homme @5 09
C03 05  X  ENG  @0 Human @5 09
C03 05  X  SPA  @0 Hombre @5 09
C03 06  X  FRE  @0 Taux de létalité @5 10
C03 06  X  ENG  @0 Case fatality rate @5 10
C03 06  X  SPA  @0 Tasa de letalidad @5 10
C03 07  X  FRE  @0 Estimation @5 11
C03 07  X  ENG  @0 Estimation @5 11
C03 07  X  SPA  @0 Estimación @5 11
C03 08  X  FRE  @0 Grippe @5 13
C03 08  X  ENG  @0 Influenza @5 13
C03 08  X  SPA  @0 Gripe @5 13
C03 09  X  FRE  @0 Santé publique @5 14
C03 09  X  ENG  @0 Public health @5 14
C03 09  X  SPA  @0 Salud pública @5 14
C03 10  X  FRE  @0 Monde @2 NG @5 15
C03 10  X  ENG  @0 World @2 NG @5 15
C03 10  X  SPA  @0 Mundo @2 NG @5 15
C03 11  X  FRE  @0 Statistique @5 16
C03 11  X  ENG  @0 Statistics @5 16
C03 11  X  SPA  @0 Estadística @5 16
C03 12  X  FRE  @0 Planification @5 17
C03 12  X  ENG  @0 Planning @5 17
C03 12  X  SPA  @0 Planificación @5 17
C03 13  X  FRE  @0 Epidémiologie @5 18
C03 13  X  ENG  @0 Epidemiology @5 18
C03 13  X  SPA  @0 Epidemiología @5 18
C03 14  X  FRE  @0 Pandémie @4 INC @5 86
C07 01  X  FRE  @0 Virose
C07 01  X  ENG  @0 Viral disease
C07 01  X  SPA  @0 Virosis
N21       @1 005

Format Inist (serveur)

NO : PASCAL 15-0008688 INIST
ET : Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach
AU : PELAT (Camille); FERGUSON (Neil M.); WHITE (Peter J.); REED (Carrie); FINELLI (Lyn); CAUCHEMEZ (Simon); FRASER (Christophe)
AF : MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London/London/Royaume-Uni (1 aut., 2 aut., 3 aut., 6 aut., 7 aut.); Modelling and Economics Unit, Public Health England/London/Royaume-Uni (3 aut.); Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention/Atlanta, Georgia/Etats-Unis (4 aut., 5 aut.); Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur/Paris/France (6 aut.)
DT : Publication en série; Niveau analytique
SO : American journal of epidemiology; ISSN 0002-9262; Coden AJEPAS; Etats-Unis; Da. 2014; Vol. 180; No. 10; Pp. 1036-1046; Bibl. 32 ref.
LA : Anglais
EA : In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.
CC : 002B30A01A1; 002B05C02C
FD : Maladie émergente; Infection; Méthodologie; Surveillance sanitaire; Homme; Taux de létalité; Estimation; Grippe; Santé publique; Monde; Statistique; Planification; Epidémiologie; Pandémie
FG : Virose
ED : Emerging disease; Infection; Methodology; Sanitary surveillance; Human; Case fatality rate; Estimation; Influenza; Public health; World; Statistics; Planning; Epidemiology
EG : Viral disease
SD : Enfermedad emergente; Infección; Metodología; Vigilancia sanitaria; Hombre; Tasa de letalidad; Estimación; Gripe; Salud pública; Mundo; Estadística; Planificación; Epidemiología
LO : INIST-663.354000502527180090
ID : 15-0008688

Links to Exploration step

Pascal:15-0008688

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach</title>
<author>
<name sortKey="Pelat, Camille" sort="Pelat, Camille" uniqKey="Pelat C" first="Camille" last="Pelat">Camille Pelat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Neil M" sort="Ferguson, Neil M" uniqKey="Ferguson N" first="Neil M." last="Ferguson">Neil M. Ferguson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="White, Peter J" sort="White, Peter J" uniqKey="White P" first="Peter J." last="White">Peter J. White</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Modelling and Economics Unit, Public Health England</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Reed, Carrie" sort="Reed, Carrie" uniqKey="Reed C" first="Carrie" last="Reed">Carrie Reed</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Finelli, Lyn" sort="Finelli, Lyn" uniqKey="Finelli L" first="Lyn" last="Finelli">Lyn Finelli</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cauchemez, Simon" sort="Cauchemez, Simon" uniqKey="Cauchemez S" first="Simon" last="Cauchemez">Simon Cauchemez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fraser, Christophe" sort="Fraser, Christophe" uniqKey="Fraser C" first="Christophe" last="Fraser">Christophe Fraser</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0008688</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0008688 INIST</idno>
<idno type="RBID">Pascal:15-0008688</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000012</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach</title>
<author>
<name sortKey="Pelat, Camille" sort="Pelat, Camille" uniqKey="Pelat C" first="Camille" last="Pelat">Camille Pelat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Neil M" sort="Ferguson, Neil M" uniqKey="Ferguson N" first="Neil M." last="Ferguson">Neil M. Ferguson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="White, Peter J" sort="White, Peter J" uniqKey="White P" first="Peter J." last="White">Peter J. White</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Modelling and Economics Unit, Public Health England</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Reed, Carrie" sort="Reed, Carrie" uniqKey="Reed C" first="Carrie" last="Reed">Carrie Reed</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Finelli, Lyn" sort="Finelli, Lyn" uniqKey="Finelli L" first="Lyn" last="Finelli">Lyn Finelli</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cauchemez, Simon" sort="Cauchemez, Simon" uniqKey="Cauchemez S" first="Simon" last="Cauchemez">Simon Cauchemez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fraser, Christophe" sort="Fraser, Christophe" uniqKey="Fraser C" first="Christophe" last="Fraser">Christophe Fraser</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">American journal of epidemiology</title>
<title level="j" type="abbreviated">Am. j. epidemiol.</title>
<idno type="ISSN">0002-9262</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">American journal of epidemiology</title>
<title level="j" type="abbreviated">Am. j. epidemiol.</title>
<idno type="ISSN">0002-9262</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Case fatality rate</term>
<term>Emerging disease</term>
<term>Epidemiology</term>
<term>Estimation</term>
<term>Human</term>
<term>Infection</term>
<term>Influenza</term>
<term>Methodology</term>
<term>Planning</term>
<term>Public health</term>
<term>Sanitary surveillance</term>
<term>Statistics</term>
<term>World</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Maladie émergente</term>
<term>Infection</term>
<term>Méthodologie</term>
<term>Surveillance sanitaire</term>
<term>Homme</term>
<term>Taux de létalité</term>
<term>Estimation</term>
<term>Grippe</term>
<term>Santé publique</term>
<term>Monde</term>
<term>Statistique</term>
<term>Planification</term>
<term>Epidémiologie</term>
<term>Pandémie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0002-9262</s0>
</fA01>
<fA02 i1="01">
<s0>AJEPAS</s0>
</fA02>
<fA03 i2="1">
<s0>Am. j. epidemiol.</s0>
</fA03>
<fA05>
<s2>180</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PELAT (Camille)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FERGUSON (Neil M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WHITE (Peter J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>REED (Carrie)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FINELLI (Lyn)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CAUCHEMEZ (Simon)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FRASER (Christophe)</s1>
</fA11>
<fA14 i1="01">
<s1>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Modelling and Economics Unit, Public Health England</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1036-1046</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>663</s2>
<s5>354000502527180090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0008688</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>American journal of epidemiology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B30A01A1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B05C02C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Maladie émergente</s0>
<s2>NM</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Emerging disease</s0>
<s2>NM</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Enfermedad emergente</s0>
<s2>NM</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Infection</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Infection</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Infección</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Méthodologie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Methodology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Metodología</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Surveillance sanitaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Sanitary surveillance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Vigilancia sanitaria</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Homme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Human</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Taux de létalité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Case fatality rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tasa de letalidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Estimation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Estimation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estimación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Grippe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Influenza</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Gripe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Santé publique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Public health</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Salud pública</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Monde</s0>
<s2>NG</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>World</s0>
<s2>NG</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mundo</s0>
<s2>NG</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Statistique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Statistics</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estadística</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Planification</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Planning</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Planificación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Epidémiologie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Epidemiology</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Epidemiología</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Pandémie</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fN21>
<s1>005</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 15-0008688 INIST</NO>
<ET>Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach</ET>
<AU>PELAT (Camille); FERGUSON (Neil M.); WHITE (Peter J.); REED (Carrie); FINELLI (Lyn); CAUCHEMEZ (Simon); FRASER (Christophe)</AU>
<AF>MRC Centre for Outbreak Analysis and Modelling and National Institute for Health Research Health Protection Research Unit in Modelling Methodology at Imperial College London, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London/London/Royaume-Uni (1 aut., 2 aut., 3 aut., 6 aut., 7 aut.); Modelling and Economics Unit, Public Health England/London/Royaume-Uni (3 aut.); Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention/Atlanta, Georgia/Etats-Unis (4 aut., 5 aut.); Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur/Paris/France (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>American journal of epidemiology; ISSN 0002-9262; Coden AJEPAS; Etats-Unis; Da. 2014; Vol. 180; No. 10; Pp. 1036-1046; Bibl. 32 ref.</SO>
<LA>Anglais</LA>
<EA>In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.</EA>
<CC>002B30A01A1; 002B05C02C</CC>
<FD>Maladie émergente; Infection; Méthodologie; Surveillance sanitaire; Homme; Taux de létalité; Estimation; Grippe; Santé publique; Monde; Statistique; Planification; Epidémiologie; Pandémie</FD>
<FG>Virose</FG>
<ED>Emerging disease; Infection; Methodology; Sanitary surveillance; Human; Case fatality rate; Estimation; Influenza; Public health; World; Statistics; Planning; Epidemiology</ED>
<EG>Viral disease</EG>
<SD>Enfermedad emergente; Infección; Metodología; Vigilancia sanitaria; Hombre; Tasa de letalidad; Estimación; Gripe; Salud pública; Mundo; Estadística; Planificación; Epidemiología</SD>
<LO>INIST-663.354000502527180090</LO>
<ID>15-0008688</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000012 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000012 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:15-0008688
   |texte=   Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021