Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.

Identifieur interne : 001C48 ( PubMed/Curation ); précédent : 001C47; suivant : 001C49

Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.

Auteurs : Adam Zaidel [Israël] ; Alexander Spivak ; Lavi Shpigelman ; Hagai Bergman ; Zvi Israel

Source :

RBID : pubmed:19533755

English descriptors

Abstract

Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13-30 Hz) oscillations in the parkinsonian state. In this study, we present a real-time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty-six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN-entry, the ventral boundary of the DLOR, and STN-exit with an error of -0.09 +/- 0.35, -0.27 +/- 0.58, and -0.20 +/- 0.33 mm, respectively (mean +/- standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra-STN) detection of a distinct DLOR-ventral boundary.

DOI: 10.1002/mds.22674
PubMed: 19533755

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19533755

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.</title>
<author>
<name sortKey="Zaidel, Adam" sort="Zaidel, Adam" uniqKey="Zaidel A" first="Adam" last="Zaidel">Adam Zaidel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel. adam@alice.nc.huji.ac.il</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Spivak, Alexander" sort="Spivak, Alexander" uniqKey="Spivak A" first="Alexander" last="Spivak">Alexander Spivak</name>
</author>
<author>
<name sortKey="Shpigelman, Lavi" sort="Shpigelman, Lavi" uniqKey="Shpigelman L" first="Lavi" last="Shpigelman">Lavi Shpigelman</name>
</author>
<author>
<name sortKey="Bergman, Hagai" sort="Bergman, Hagai" uniqKey="Bergman H" first="Hagai" last="Bergman">Hagai Bergman</name>
</author>
<author>
<name sortKey="Israel, Zvi" sort="Israel, Zvi" uniqKey="Israel Z" first="Zvi" last="Israel">Zvi Israel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1002/mds.22674</idno>
<idno type="RBID">pubmed:19533755</idno>
<idno type="pmid">19533755</idno>
<idno type="wicri:Area/PubMed/Corpus">001C48</idno>
<idno type="wicri:Area/PubMed/Curation">001C48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.</title>
<author>
<name sortKey="Zaidel, Adam" sort="Zaidel, Adam" uniqKey="Zaidel A" first="Adam" last="Zaidel">Adam Zaidel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel. adam@alice.nc.huji.ac.il</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Spivak, Alexander" sort="Spivak, Alexander" uniqKey="Spivak A" first="Alexander" last="Spivak">Alexander Spivak</name>
</author>
<author>
<name sortKey="Shpigelman, Lavi" sort="Shpigelman, Lavi" uniqKey="Shpigelman L" first="Lavi" last="Shpigelman">Lavi Shpigelman</name>
</author>
<author>
<name sortKey="Bergman, Hagai" sort="Bergman, Hagai" uniqKey="Bergman H" first="Hagai" last="Bergman">Hagai Bergman</name>
</author>
<author>
<name sortKey="Israel, Zvi" sort="Israel, Zvi" uniqKey="Israel Z" first="Zvi" last="Israel">Zvi Israel</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Action Potentials (physiology)</term>
<term>Aged</term>
<term>Algorithms</term>
<term>Beta Rhythm</term>
<term>Deep Brain Stimulation (methods)</term>
<term>Electrodes, Implanted</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Markov Chains</term>
<term>Microelectrodes</term>
<term>Middle Aged</term>
<term>Parkinson Disease (therapy)</term>
<term>Reproducibility of Results</term>
<term>Spectrum Analysis</term>
<term>Subthalamic Nucleus (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Deep Brain Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Action Potentials</term>
<term>Subthalamic Nucleus</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Algorithms</term>
<term>Beta Rhythm</term>
<term>Electrodes, Implanted</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Markov Chains</term>
<term>Microelectrodes</term>
<term>Middle Aged</term>
<term>Reproducibility of Results</term>
<term>Spectrum Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13-30 Hz) oscillations in the parkinsonian state. In this study, we present a real-time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty-six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN-entry, the ventral boundary of the DLOR, and STN-exit with an error of -0.09 +/- 0.35, -0.27 +/- 0.58, and -0.20 +/- 0.33 mm, respectively (mean +/- standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra-STN) detection of a distinct DLOR-ventral boundary.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19533755</PMID>
<DateCreated>
<Year>2009</Year>
<Month>09</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>04</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.</ArticleTitle>
<Pagination>
<MedlinePgn>1785-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.22674</ELocationID>
<Abstract>
<AbstractText>Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13-30 Hz) oscillations in the parkinsonian state. In this study, we present a real-time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty-six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN-entry, the ventral boundary of the DLOR, and STN-exit with an error of -0.09 +/- 0.35, -0.27 +/- 0.58, and -0.20 +/- 0.33 mm, respectively (mean +/- standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra-STN) detection of a distinct DLOR-ventral boundary.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zaidel</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel. adam@alice.nc.huji.ac.il</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spivak</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shpigelman</LastName>
<ForeName>Lavi</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bergman</LastName>
<ForeName>Hagai</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Israel</LastName>
<ForeName>Zvi</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000200">Action Potentials</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000368">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001611">Beta Rhythm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D046690">Deep Brain Stimulation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004567">Electrodes, Implanted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008390">Markov Chains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008839">Microelectrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008875">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010300">Parkinson Disease</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000628">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013057">Spectrum Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020531">Subthalamic Nucleus</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.22674</ArticleId>
<ArticleId IdType="pubmed">19533755</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001C48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:19533755
   |texte=   Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:19533755" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024