Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

No Evidence for Substrate Accumulation in Parkinson Brains With GBA Mutations

Identifieur interne : 000468 ( Pmc/Curation ); précédent : 000467; suivant : 000469

No Evidence for Substrate Accumulation in Parkinson Brains With GBA Mutations

Auteurs : Matthew E. Gegg [Royaume-Uni] ; Lindsay Sweet [États-Unis] ; Bing H. Wang [États-Unis] ; Lamya S. Shihabuddin [États-Unis] ; Sergio Pablo Sardi [États-Unis] ; Anthony H. V. Schapira [Royaume-Uni]

Source :

RBID : PMC:4529481

Abstract

Background

To establish whether Parkinson’s disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme’s substrate, glucosylceramide, or other changes in lipid composition.

Methods

Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5-7) and cerebellum (n = 7-14) of controls, Parkinson’s disease brains with heterozygote GBA1 mutations (PD+GBA), or sporadic PD.

Results

Total glucosylceramide levels were unchanged in both PD+GBA and sporadic PD brains when compared with controls. No changes in glucosylsphingosine (deacetylated glucosylceramide), sphingomyelin, gangliosides (GM2, GM3), or total cholesterol were observed in either putamen or cerebellum.

Conclusions

This study did not demonstrate glucocerebrosidase substrate accumulation in PD brains with heterozygote GBA1 mutations in areas of the brain with low α-synuclein pathology.


Url:
DOI: 10.1002/mds.26278
PubMed: 26096906
PubMed Central: 4529481

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4529481

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">No Evidence for Substrate Accumulation in Parkinson Brains With
<italic>GBA</italic>
Mutations</title>
<author>
<name sortKey="Gegg, Matthew E" sort="Gegg, Matthew E" uniqKey="Gegg M" first="Matthew E." last="Gegg">Matthew E. Gegg</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical Neuroscience, UCL Institute of Neurology, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sweet, Lindsay" sort="Sweet, Lindsay" uniqKey="Sweet L" first="Lindsay" last="Sweet">Lindsay Sweet</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bing H" sort="Wang, Bing H" uniqKey="Wang B" first="Bing H." last="Wang">Bing H. Wang</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shihabuddin, Lamya S" sort="Shihabuddin, Lamya S" uniqKey="Shihabuddin L" first="Lamya S." last="Shihabuddin">Lamya S. Shihabuddin</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sardi, Sergio Pablo" sort="Sardi, Sergio Pablo" uniqKey="Sardi S" first="Sergio Pablo" last="Sardi">Sergio Pablo Sardi</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schapira, Anthony H V" sort="Schapira, Anthony H V" uniqKey="Schapira A" first="Anthony H. V." last="Schapira">Anthony H. V. Schapira</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical Neuroscience, UCL Institute of Neurology, London</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26096906</idno>
<idno type="pmc">4529481</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529481</idno>
<idno type="RBID">PMC:4529481</idno>
<idno type="doi">10.1002/mds.26278</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000468</idno>
<idno type="wicri:Area/Pmc/Curation">000468</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">No Evidence for Substrate Accumulation in Parkinson Brains With
<italic>GBA</italic>
Mutations</title>
<author>
<name sortKey="Gegg, Matthew E" sort="Gegg, Matthew E" uniqKey="Gegg M" first="Matthew E." last="Gegg">Matthew E. Gegg</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical Neuroscience, UCL Institute of Neurology, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sweet, Lindsay" sort="Sweet, Lindsay" uniqKey="Sweet L" first="Lindsay" last="Sweet">Lindsay Sweet</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bing H" sort="Wang, Bing H" uniqKey="Wang B" first="Bing H." last="Wang">Bing H. Wang</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shihabuddin, Lamya S" sort="Shihabuddin, Lamya S" uniqKey="Shihabuddin L" first="Lamya S." last="Shihabuddin">Lamya S. Shihabuddin</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sardi, Sergio Pablo" sort="Sardi, Sergio Pablo" uniqKey="Sardi S" first="Sergio Pablo" last="Sardi">Sergio Pablo Sardi</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genzyme, a Sanofi Company, Framingham, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schapira, Anthony H V" sort="Schapira, Anthony H V" uniqKey="Schapira A" first="Anthony H. V." last="Schapira">Anthony H. V. Schapira</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical Neuroscience, UCL Institute of Neurology, London</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="ISSN">0885-3185</idno>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="S1">
<title>Background</title>
<p id="P1">To establish whether Parkinson’s disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme’s substrate, glucosylceramide, or other changes in lipid composition.</p>
</sec>
<sec id="S2">
<title>Methods</title>
<p id="P2">Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5-7) and cerebellum (n = 7-14) of controls, Parkinson’s disease brains with heterozygote
<italic>GBA1</italic>
mutations (PD+GBA), or sporadic PD.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">Total glucosylceramide levels were unchanged in both PD+GBA and sporadic PD brains when compared with controls. No changes in glucosylsphingosine (deacetylated glucosylceramide), sphingomyelin, gangliosides (GM2, GM3), or total cholesterol were observed in either putamen or cerebellum.</p>
</sec>
<sec id="S4">
<title>Conclusions</title>
<p id="P4">This study did not demonstrate glucocerebrosidase substrate accumulation in PD brains with heterozygote
<italic>GBA1</italic>
mutations in areas of the brain with low α-synuclein pathology.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidransky, E" uniqKey="Sidransky E">E Sidransky</name>
</author>
<author>
<name sortKey="Nalls, Ma" uniqKey="Nalls M">MA Nalls</name>
</author>
<author>
<name sortKey="Aasly, Jo" uniqKey="Aasly J">JO Aasly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neumann, J" uniqKey="Neumann J">J Neumann</name>
</author>
<author>
<name sortKey="Bras, J" uniqKey="Bras J">J Bras</name>
</author>
<author>
<name sortKey="Deas, E" uniqKey="Deas E">E Deas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabowski, Ga" uniqKey="Grabowski G">GA Grabowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gegg, Me" uniqKey="Gegg M">ME Gegg</name>
</author>
<author>
<name sortKey="Burke, D" uniqKey="Burke D">D Burke</name>
</author>
<author>
<name sortKey="Heales, Sjr" uniqKey="Heales S">SJR Heales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Ke" uniqKey="Murphy K">KE Murphy</name>
</author>
<author>
<name sortKey="Gysbers, Am" uniqKey="Gysbers A">AM Gysbers</name>
</author>
<author>
<name sortKey="Abbott, Sk" uniqKey="Abbott S">SK Abbott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez Erviti, L" uniqKey="Alvarez Erviti L">L Alvarez-Erviti</name>
</author>
<author>
<name sortKey="Rodriguez Oroz, Mc" uniqKey="Rodriguez Oroz M">MC Rodriguez-Oroz</name>
</author>
<author>
<name sortKey="Cooper, Jm" uniqKey="Cooper J">JM Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dehay, B" uniqKey="Dehay B">B Dehay</name>
</author>
<author>
<name sortKey="Bove, J" uniqKey="Bove J">J Bové</name>
</author>
<author>
<name sortKey="Rodriguez Muela, N" uniqKey="Rodriguez Muela N">N Rodríguez-Muela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gegg, Me" uniqKey="Gegg M">ME Gegg</name>
</author>
<author>
<name sortKey="Schapira, Ahv" uniqKey="Schapira A">AHV Schapira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mazzulli, Jr" uniqKey="Mazzulli J">JR Mazzulli</name>
</author>
<author>
<name sortKey="Xu, Y H" uniqKey="Xu Y">Y-H Xu</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sardi, Sp" uniqKey="Sardi S">SP Sardi</name>
</author>
<author>
<name sortKey="Clarke, J" uniqKey="Clarke J">J Clarke</name>
</author>
<author>
<name sortKey="Kinnecom, C" uniqKey="Kinnecom C">C Kinnecom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osellame, Ld" uniqKey="Osellame L">LD Osellame</name>
</author>
<author>
<name sortKey="Rahim, Aa" uniqKey="Rahim A">AA Rahim</name>
</author>
<author>
<name sortKey="Hargreaves, Ip" uniqKey="Hargreaves I">IP Hargreaves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cullen, V" uniqKey="Cullen V">V Cullen</name>
</author>
<author>
<name sortKey="Sardi, Sp" uniqKey="Sardi S">SP Sardi</name>
</author>
<author>
<name sortKey="Ng, J" uniqKey="Ng J">J Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schondorf, Dc" uniqKey="Schondorf D">DC Schöndorf</name>
</author>
<author>
<name sortKey="Aureli, M" uniqKey="Aureli M">M Aureli</name>
</author>
<author>
<name sortKey="Mcallister, Fe" uniqKey="Mcallister F">FE McAllister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Xu, Y H" uniqKey="Xu Y">Y-H Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Svennerholm, L" uniqKey="Svennerholm L">L Svennerholm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Grabowski, Ga" uniqKey="Grabowski G">GA Grabowski</name>
</author>
<author>
<name sortKey="Ludman, Md" uniqKey="Ludman M">MD Ludman</name>
</author>
<author>
<name sortKey="Desnick, Rj" uniqKey="Desnick R">RJ Desnick</name>
</author>
<author>
<name sortKey="Svennerholm, L" uniqKey="Svennerholm L">L Svennerholm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orvisky, E" uniqKey="Orvisky E">E Orvisky</name>
</author>
<author>
<name sortKey="Park, Jk" uniqKey="Park J">JK Park</name>
</author>
<author>
<name sortKey="Lamarca, Me" uniqKey="Lamarca M">ME LaMarca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbott, Sk" uniqKey="Abbott S">SK Abbott</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Mu Oz, Ss" uniqKey="Mu Oz S">SS Muñoz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duran, R" uniqKey="Duran R">R Duran</name>
</author>
<author>
<name sortKey="Mencacci, Ne" uniqKey="Mencacci N">NE Mencacci</name>
</author>
<author>
<name sortKey="Angeli, Av" uniqKey="Angeli A">AV Angeli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grace, Me" uniqKey="Grace M">ME Grace</name>
</author>
<author>
<name sortKey="Ashton Prolla, P" uniqKey="Ashton Prolla P">P Ashton-Prolla</name>
</author>
<author>
<name sortKey="Pastores, Gm" uniqKey="Pastores G">GM Pastores</name>
</author>
<author>
<name sortKey="Soni, A" uniqKey="Soni A">A Soni</name>
</author>
<author>
<name sortKey="Desnick, Rj" uniqKey="Desnick R">RJ Desnick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montfort, M" uniqKey="Montfort M">M Montfort</name>
</author>
<author>
<name sortKey="Chabas, A" uniqKey="Chabas A">A Chabás</name>
</author>
<author>
<name sortKey="Vilageliu, L" uniqKey="Vilageliu L">L Vilageliu</name>
</author>
<author>
<name sortKey="Grinberg, D" uniqKey="Grinberg D">D Grinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liou, B" uniqKey="Liou B">B Liou</name>
</author>
<author>
<name sortKey="Grabowski, Ga" uniqKey="Grabowski G">GA Grabowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcneill, A" uniqKey="Mcneill A">A McNeill</name>
</author>
<author>
<name sortKey="Magalhaes, J" uniqKey="Magalhaes J">J Magalhaes</name>
</author>
<author>
<name sortKey="Shen, C" uniqKey="Shen C">C Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamb, Ca" uniqKey="Lamb C">CA Lamb</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T Yoshimori</name>
</author>
<author>
<name sortKey="Tooze, Sa" uniqKey="Tooze S">SA Tooze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koga, H" uniqKey="Koga H">H Koga</name>
</author>
<author>
<name sortKey="Kaushik, S" uniqKey="Kaushik S">S Kaushik</name>
</author>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, S" uniqKey="Kaushik S">S Kaushik</name>
</author>
<author>
<name sortKey="Massey, Ac" uniqKey="Massey A">AC Massey</name>
</author>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Navarro, Ja" uniqKey="Rodriguez Navarro J">JA Rodriguez-Navarro</name>
</author>
<author>
<name sortKey="Kaushik, S" uniqKey="Kaushik S">S Kaushik</name>
</author>
<author>
<name sortKey="Koga, H" uniqKey="Koga H">H Koga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fabelo, N" uniqKey="Fabelo N">N Fabelo</name>
</author>
<author>
<name sortKey="Martin, V" uniqKey="Martin V">V Martín</name>
</author>
<author>
<name sortKey="Santpere, G" uniqKey="Santpere G">G Santpere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brockmann, K" uniqKey="Brockmann K">K Brockmann</name>
</author>
<author>
<name sortKey="Hilker, R" uniqKey="Hilker R">R Hilker</name>
</author>
<author>
<name sortKey="Pilatus, U" uniqKey="Pilatus U">U Pilatus</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8610688</journal-id>
<journal-id journal-id-type="pubmed-jr-id">5937</journal-id>
<journal-id journal-id-type="nlm-ta">Mov Disord</journal-id>
<journal-id journal-id-type="iso-abbrev">Mov. Disord.</journal-id>
<journal-title-group>
<journal-title>Movement disorders : official journal of the Movement Disorder Society</journal-title>
</journal-title-group>
<issn pub-type="ppub">0885-3185</issn>
<issn pub-type="epub">1531-8257</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26096906</article-id>
<article-id pub-id-type="pmc">4529481</article-id>
<article-id pub-id-type="doi">10.1002/mds.26278</article-id>
<article-id pub-id-type="manuscript">EMS64556</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>No Evidence for Substrate Accumulation in Parkinson Brains With
<italic>GBA</italic>
Mutations</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gegg</surname>
<given-names>Matthew E.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sweet</surname>
<given-names>Lindsay</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Bing H.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shihabuddin</surname>
<given-names>Lamya S.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sardi</surname>
<given-names>Sergio Pablo</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schapira</surname>
<given-names>Anthony H.V.</given-names>
</name>
<degrees>MD</degrees>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="corresp" rid="CR1">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK</aff>
<aff id="A2">
<label>2</label>
Genzyme, a Sanofi Company, Framingham, Massachusetts, USA</aff>
<author-notes>
<corresp id="CR1">
<label>*</label>
<bold>Correspondence to</bold>
: Prof. A.H.V. Schapira, Department of Clinical Neuroscience, UCL Institute of Neurology, Hampstead Campus, Rowland Hill Street, London NW3 2PF, UK,
<email>a.schapira@ucl.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>3</day>
<month>8</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>11</day>
<month>6</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>08</day>
<month>8</month>
<year>2015</year>
</pub-date>
<volume>30</volume>
<issue>8</issue>
<fpage>1085</fpage>
<lpage>1089</lpage>
<pmc-comment>elocation-id from pubmed: 10.1002/mds.26278</pmc-comment>
<permissions>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec id="S1">
<title>Background</title>
<p id="P1">To establish whether Parkinson’s disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme’s substrate, glucosylceramide, or other changes in lipid composition.</p>
</sec>
<sec id="S2">
<title>Methods</title>
<p id="P2">Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5-7) and cerebellum (n = 7-14) of controls, Parkinson’s disease brains with heterozygote
<italic>GBA1</italic>
mutations (PD+GBA), or sporadic PD.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">Total glucosylceramide levels were unchanged in both PD+GBA and sporadic PD brains when compared with controls. No changes in glucosylsphingosine (deacetylated glucosylceramide), sphingomyelin, gangliosides (GM2, GM3), or total cholesterol were observed in either putamen or cerebellum.</p>
</sec>
<sec id="S4">
<title>Conclusions</title>
<p id="P4">This study did not demonstrate glucocerebrosidase substrate accumulation in PD brains with heterozygote
<italic>GBA1</italic>
mutations in areas of the brain with low α-synuclein pathology.</p>
</sec>
</abstract>
<kwd-group>
<kwd>glucocerebrosidase</kwd>
<kwd>lysosomes</kwd>
<kwd>Parkinson’s disease</kwd>
<kwd>sphingolipids</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<p id="P5">Mutations in the
<italic>GBA1</italic>
gene are numerically the most important genetic risk factor for developing Parkinson’s disease (PD).
<sup>
<xref rid="R1" ref-type="bibr">1</xref>
,
<xref rid="R2" ref-type="bibr">2</xref>
</sup>
A large multicenter study showed that PD patients had an odds ratio of over 5 for carrying a
<italic>GBA1</italic>
mutation, compared with a similar-sized control population.
<sup>
<xref rid="R1" ref-type="bibr">1</xref>
</sup>
<italic>GBA1</italic>
encodes for the lysosomal enzyme glucocerebrosidase (GCase), which catabolizes the sphingolipid glucosylceramide (GlcCer) to glucose and ceramide. Homozygous
<italic>GBA1</italic>
mutations result in the accumulation of GlcCer in lysosomes and cause the lysosomal storage disorder Gaucher disease (GD).
<sup>
<xref rid="R3" ref-type="bibr">3</xref>
</sup>
</p>
<p id="P6">The activity of GCase is decreased in PD brains with heterozygous
<italic>GBA1</italic>
mutations (PD+GBA), with the greatest decrease (58%) in the substantia nigra,
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
the area of the brain with the greatest PD pathology. Notably, GCase was also significantly decreased by 33% in the substantia nigra of sporadic PD brains.
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
GCase activity also has been reported to be decreased in the anterior cingulate cortex of sporadic PD brains.
<sup>
<xref rid="R5" ref-type="bibr">5</xref>
</sup>
</p>
<p id="P7">Defects in the autophagy–lysosomal pathway (ALP) are implicated in the accumulation/aggregation of α-synuclein and mitochondrial dysfunction observed in PD.
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
-
<xref rid="R8" ref-type="bibr">8</xref>
</sup>
Cellular and animal models of GCase deficiency have shown impaired ALP, resulting in increased asynuclein levels and decreased mitochondrial function in neurons and brain.
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
-
<xref rid="R13" ref-type="bibr">13</xref>
</sup>
The mechanism by which loss of GCase activity affects the ALP is unclear. The accumulation of GlcCer or glucosylsphingosine (GlcSph; deacetylated GlcCer) could contribute to lysosomal dysfunction and toxicity, and so to the pathogenesis of PD in
<italic>GBA1</italic>
mutation carriers.
<sup>
<xref rid="R13" ref-type="bibr">13</xref>
,
<xref rid="R14" ref-type="bibr">14</xref>
</sup>
However, although PD+GBA brains have significant loss of GCase activity, the residual function of the enzyme may be sufficient to prevent substrate accumulation. Given the role of GCase in sphingolipid metabolism, we have performed lipidomic analysis of GlcCer, GlcSph, sphingomyelin, and gangliosides in the putamen and cerebellum of PD+GBA brains that we have previously reported to have decreased GCase activity.
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
</p>
<sec sec-type="methods" id="S5">
<title>Materials and Methods</title>
<sec sec-type="materials" id="S6">
<title>Postmortem Brain Material</title>
<p id="P8">Postmortem control brains, PD brains with known heterozygote
<italic>GBA1</italic>
mutations (PD+GBA), and sporadic PD brains were obtained from the Queen Square Brain Bank for Neurological Disorders after local ethical approval.
<italic>GBA1</italic>
mutations were identified by Sanger sequencing all 11 exons of the open reading frame. All donors gave written informed consent. All PD cases met the UK Brain Bank Clinical Criteria for Parkinson’s disease. The pathological and biochemical analyses of these brains have been described.
<sup>
<xref rid="R2" ref-type="bibr">2</xref>
,
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
Lipidomic analyses were performed on the putamen (n = 5-7 per group) and cerebellum (n = 7-14 per group). The genotypes of the PD+GBA putamen samples were one L444P/wt, one R463C/wt, one R193E/wt, and two N370S/wt. The genotypes of the PD+GBA cerebellum samples were five L444P/wt, one R463C/wt, one R131C/wt, three N370S/wt, one RecA456P/wt, one D409H/wt, one G193E/wt, and one Rec
<italic>NciI</italic>
/wt. The mean age (years ± standard error of the mean) for each cohort was: control, 65.4 ± 6.3; PD+GBA, 67.8 ± 3.0; sporadic PD, 69.6 ± 2.9. The postmortem delay (hours ± standard error of the mean) of each cohort: control, 55.1 ± 8.5; PD+GBA, 50.5 ± 6.6; sporadic PD, 37.8 ± 3.3.</p>
</sec>
<sec id="S7">
<title>Total Cholesterol Measurement</title>
<p id="P9">Brain tissue was homogenized in isolation medium (250 mM sucrose, 10 mM Tris, pH 7.4, 1 mM ethylenediaminetetra-aetic acid) and total cholesterol (free cholesterol and cholesteryl esters) measured using the Amplex Red Cholesterol Assay Kit (Life Technologies, Paisley, UK). Total cholesterol concentration (μg/mL) was normalized against the protein concentration of each sample (Pierce BCA Protein Assay Kit, Life Technologies, Paisley, UK).</p>
</sec>
<sec id="S8">
<title>Lipidomic Analyses</title>
<p id="P10">Quantitative analysis of sphingolipids was performed by using liquid chromatography and tandem mass spectrometry. Briefly, tissues were homogenized in water to give a final concentration of approximately 100 mg/mL (w/v). The homogenate was extracted with 1 mL of a solution of acetonitrile:methanol:water (97:2:1, v/v/v) at room temperature. Extracts were injected onto an Atlantis HILIC silica column (Waters Corp, Milford, MA) for separation of GlcCer and GalCer, and these molecules were detected by using multiple reaction monitoring (MRM) mode tandem mass spectrometry with an AB Sciex API-5000 mass spectrometer (AB Sciex, Framingham, MA). For other lipid analysis, extracts were injected onto an Acquity BEH C8 column (Waters Corp., Milford, MA), and MRM mode detection was performed using an AB Sciex API-5000 mass spectrometer. For GlcSph analysis, homogenate was extracted with 1 mL of acetonitrile:methanol:water (48.5:50.5:1, v/v/v), and extracts were injected onto an Acquity BEH HILIC column to resolve GlcSph from psychosine, (Waters Corp., Milford, MA) and detected using MRM mode with an Agilent 6490 mass spectrometer. Except for phosphatidylcholine, all analytes were quantitated against standards obtained from Matreya, LLC (Pleasant Gap, PA).</p>
</sec>
</sec>
<sec sec-type="results" id="S9">
<title>Results</title>
<p id="P11">Lipidomic analyses were performed on the putamen and the cerebellum. The substantia nigra was not measured because of insufficient material. In a previous biochemical study, the activity of GCase has been reported to be significantly decreased (
<italic>P</italic>
< 0.01 vs. control) by 48% in the putamen of PD+GBA brains and 47% in the cerebellum.
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
In sporadic PD, GCase activity was decreased by 19% (nonsignificant) and 24% (
<italic>P</italic>
< 0.05 vs. control) in the putamen and cerebellum, respectively.
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
</p>
<p id="P12">Total GlcCer levels in the putamen and cerebellum were similar in control, PD+GBA, and sporadic PD brains when normalized against protein (
<xref ref-type="table" rid="T1">Table 1</xref>
). No changes were observed when total GlcCer levels were normalized to sphingomyelin in putamen or cerebellum (data not shown). Plotting total GlcCer levels against GCase activity for each individual did not show any correlation either (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). Similar to previous studies, the predominant GlcCer species in human brain was C18:0.
<sup>
<xref rid="R15" ref-type="bibr">15</xref>
,
<xref rid="R16" ref-type="bibr">16</xref>
</sup>
The GlcCer C24:0 species was significantly increased in PD+GBA cerebellum by 212% (
<italic>P</italic>
< 0.05), when compared with control. No other changes in GlcCer species were observed in PD+GBA or sporadic PD brains.</p>
<p id="P13">The levels of GlcSph have been shown to be increased in human GD brains and GD mouse models.
<sup>
<xref rid="R10" ref-type="bibr">10</xref>
,
<xref rid="R14" ref-type="bibr">14</xref>
,
<xref rid="R15" ref-type="bibr">15</xref>
,
<xref rid="R17" ref-type="bibr">17</xref>
</sup>
GlcSph was unaffected in the putamen and cerebellum of PD+GBA and sporadic PD brains, when compared with control.</p>
<p id="P14">No changes were seen in the amounts of lactosylceramide or sphingomyelin in either the putamen or cerebellum of PD+GBA or sporadic PD brains (
<xref ref-type="table" rid="T1">Table 1</xref>
). Although not significant, a trend was seen for increased ganglioside levels (GM2 and GM3) in the putamen of PD+GBA brains.</p>
<p id="P15">The levels of cholesterol were not significantly affected in the putamen (control, 375 ± 35 nmol/mg protein; PD+GBA, 328 ± 17; sporadic PD, 316 ± 22). The amount of phosphatidylcholine in the putamen was also unaffected (control, 20.93 ± 5.39 AU/mg of protein; PD+GBA, 23.49 ± 1.23 AU/mg of protein; sporadic PD, 25.36 ± 0.59 AU/mg of protein).</p>
</sec>
<sec sec-type="discussion" id="S10">
<title>Discussion</title>
<p id="P16">In this study, we found no evidence of accumulation of either GlcCer or GlcSph in the putamen or cerebellum of PD brains with heterozygote
<italic>GBA1</italic>
mutations. No changes were observed in sphingomyelin or cholesterol, although a trend was seen for increased GM2 and GM3 gangliosides in the putamen of PD+GBA brains. Possibly GlcCer accumulation is masked by shunting to these upstream gangliosides and other lipid species not analyzed in this study. We did not investigate ceramide, but both a strong trend for
<sup>
<xref rid="R5" ref-type="bibr">5</xref>
</sup>
and a statistically significant
<sup>
<xref rid="R18" ref-type="bibr">18</xref>
</sup>
decrease in total ceramide levels have been reported in sporadic PD anterior cingulate cortex,
<sup>
<xref rid="R5" ref-type="bibr">5</xref>
</sup>
suggesting that changes in sphingolipid metabolism may occur in PD. Analysis of sphingolipids in regions of the limbic system with significant asynuclein pathology would be an interesting future study.</p>
<p id="P17">GCase activity was decreased by approximately 50% in the putamen and cerebellum of PD+GBA brains, with both regions showing a significant decrease in GCase protein expression.
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
Heterozygous
<italic>GBA1</italic>
KO mice with a similar GCase deficiency do not show an increase in GlcCer or GlcSph in brain up to 6 months of age.
<sup>
<xref rid="R10" ref-type="bibr">10</xref>
</sup>
Because the lipidomic analyses were performed on brain lysates, conceivably substrate accumulation in neurons is being masked by the more numerous glia. Subcellular fractionation also may indicate localized increases in GlcCer. Indeed, small increases in GlcCer have been reported in primary cultured cortical neurons with GCase knockdown (approximately 50% GCase activity loss)
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
</sup>
or dopaminergic neurons differentiated from inducible pluripotent stem cells harboring heterozygote
<italic>GBA1</italic>
mutations.
<sup>
<xref rid="R13" ref-type="bibr">13</xref>
</sup>
However, in both cases, substrate accumulation was much less than the degree reported in type II/III GD brains.
<sup>
<xref rid="R15" ref-type="bibr">15</xref>
</sup>
</p>
<p id="P18">The mechanism by which GCase deficiency increases risk for developing PD is still unclear. In vitro experiments have suggested that GlcCer can stabilize soluble oligomeric forms of recombinant α-synuclein at lysosomal pH.
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
</sup>
Although potentially relevant to GD patients who develop PD, this may not be the mechanism for PD+GBA patients lacking substrate accumulation in the brain. The GCase variant E326K has recently been reported to be the most common
<italic>GBA1</italic>
mutation in a British cohort of early-onset PD cases (≤50 y of age).
<sup>
<xref rid="R19" ref-type="bibr">19</xref>
</sup>
Although this mutation on its own decreases GCase activity, residual activity is still much greater than other GD mutations such as N370S and L444P.
<sup>
<xref rid="R20" ref-type="bibr">20</xref>
-
<xref rid="R23" ref-type="bibr">23</xref>
</sup>
Although still unproven, heterozygote E326K mutations causing GlcCer accumulation seems unlikely.</p>
<p id="P19">Because GCase is involved in sphingolipid metabolism, possibly changes in the composition of cellular membranes will contribute to PD. Impairment of the ALP has been suggested to contribute to the increased α-synuclein observed in cellular and animal models of GCase deficiency.
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
,
<xref rid="R11" ref-type="bibr">11</xref>
,
<xref rid="R13" ref-type="bibr">13</xref>
</sup>
Membrane dynamics are critical for macroautophagy, ranging from biogenesis of the phagophore to the fusion of autophagosomes (APs) with lysosomes.
<sup>
<xref rid="R24" ref-type="bibr">24</xref>
</sup>
Changes in the lipid content or cholesterol can impair the fusion of APs with lysosomes.
<sup>
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
Increased lysosomal cholesterol content or changes in the lipid composition also significantly inhibits chaperone-mediated autophagy.
<sup>
<xref rid="R26" ref-type="bibr">26</xref>
,
<xref rid="R27" ref-type="bibr">27</xref>
</sup>
Therefore, although we or others have not found total changes in sphingolipid or cholesterol content in PD brains with
<italic>GBA1</italic>
mutations, sporadic PD brains, or GD brains,
<sup>
<xref rid="R5" ref-type="bibr">5</xref>
,
<xref rid="R15" ref-type="bibr">15</xref>
,
<xref rid="R28" ref-type="bibr">28</xref>
</sup>
possibly the subcellular composition of organelles, lipid rafts, and other functional membrane domains are affected. Magnetic resonance spectroscopic imaging of PD patients with
<italic>GBA1</italic>
mutations has suggested that phospholipid metabolism is affected.
<sup>
<xref rid="R29" ref-type="bibr">29</xref>
</sup>
</p>
</sec>
</body>
<back>
<ack id="S11">
<p>
<bold>Funding agencies:</bold>
This study was funded by the Wellcome Trust/MRC Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson’s Disease Consortium, the MRC Centre of Excellence in Neurodegeneration (MR/L501499/1), and Parkinson’s UK (G-1104), the NHIR support to UCLH BRC, and A.H.V.S. is an NIHR Senior Investigator.</p>
</ack>
<fn-group>
<fn id="FN1">
<p id="P20">
<bold>Relevant conflicts of interest/financial disclosures:</bold>
Nothing to report. Full financial disclosures and author roles may be found in the online version of this article.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidransky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nalls</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Aasly</surname>
<given-names>JO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease</article-title>
<source>N Engl J Med</source>
<year>2009</year>
<volume>361</volume>
<fpage>1651</fpage>
<lpage>1661</lpage>
<pub-id pub-id-type="pmid">19846850</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neumann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bras</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Deas</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease</article-title>
<source>Brain</source>
<year>2009</year>
<volume>132</volume>
<fpage>1783</fpage>
<lpage>1794</lpage>
<pub-id pub-id-type="pmid">19286695</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grabowski</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Phenotype, diagnosis, and treatment of Gaucher’s disease</article-title>
<source>Lancet</source>
<year>2008</year>
<volume>372</volume>
<fpage>1263</fpage>
<lpage>1271</lpage>
<pub-id pub-id-type="pmid">19094956</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gegg</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Heales</surname>
<given-names>SJR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains</article-title>
<source>Ann Neurol</source>
<year>2012</year>
<volume>72</volume>
<fpage>455</fpage>
<lpage>463</lpage>
<pub-id pub-id-type="pmid">23034917</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Gysbers</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease</article-title>
<source>Brain</source>
<year>2014</year>
<volume>137</volume>
<fpage>834</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="pmid">24477431</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez-Erviti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rodriguez-Oroz</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chaperone-mediated autophagy markers in Parkinson disease brains</article-title>
<source>Arch Neurol</source>
<year>2010</year>
<volume>67</volume>
<fpage>1464</fpage>
<lpage>1472</lpage>
<pub-id pub-id-type="pmid">20697033</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dehay</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bové</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rodríguez-Muela</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogenic lysosomal depletion in Parkinson’s disease</article-title>
<source>J Neurosci</source>
<year>2010</year>
<volume>30</volume>
<fpage>12535</fpage>
<lpage>12544</lpage>
<pub-id pub-id-type="pmid">20844148</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gegg</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Schapira</surname>
<given-names>AHV</given-names>
</name>
</person-group>
<article-title>PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: Implications for Parkinson disease pathogenesis</article-title>
<source>Autophagy</source>
<year>2011</year>
<volume>7</volume>
<fpage>243</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="pmid">21139416</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mazzulli</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y-H</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies</article-title>
<source>Cell</source>
<year>2011</year>
<volume>146</volume>
<fpage>37</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">21700325</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sardi</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kinnecom</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2011</year>
<volume>108</volume>
<fpage>12101</fpage>
<lpage>12106</lpage>
<pub-id pub-id-type="pmid">21730160</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osellame</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Rahim</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Hargreaves</surname>
<given-names>IP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mitochondria and quality control defects in a mouse model of Gaucher disease: links to Parkinson’s disease</article-title>
<source>Cell Metab</source>
<year>2013</year>
<volume>17</volume>
<fpage>941</fpage>
<lpage>953</lpage>
<pub-id pub-id-type="pmid">23707074</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cullen</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sardi</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing</article-title>
<source>Ann Neurol</source>
<year>2011</year>
<volume>69</volume>
<fpage>940</fpage>
<lpage>953</lpage>
<pub-id pub-id-type="pmid">21472771</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schöndorf</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Aureli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>FE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis</article-title>
<source>Nat Commun</source>
<year>2014</year>
<volume>5</volume>
<fpage>4028</fpage>
<lpage>4045</lpage>
<pub-id pub-id-type="pmid">24905578</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y-H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Substrate compositional variation with tissue/region and Gba1 mutations in mouse models: implications for Gaucher disease</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e57560</fpage>
<pub-id pub-id-type="pmid">23520473</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Svennerholm</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease</article-title>
<source>J Neurochem</source>
<year>1982</year>
<volume>39</volume>
<fpage>709</fpage>
<lpage>718</lpage>
<pub-id pub-id-type="pmid">7097276</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Grabowski</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Ludman</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Desnick</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Svennerholm</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Glycosphingolipid studies of visceral tissues and brain from type 1 Gaucher disease variants</article-title>
<source>Clin Genet</source>
<year>1985</year>
<volume>27</volume>
<fpage>443</fpage>
<lpage>450</lpage>
<pub-id pub-id-type="pmid">3924448</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orvisky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>LaMarca</surname>
<given-names>ME</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype</article-title>
<source>Mol Genet Metab</source>
<year>2002</year>
<volume>76</volume>
<fpage>262</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="pmid">12208131</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abbott</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Muñoz</surname>
<given-names>SS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease</article-title>
<source>Mov Disord</source>
<year>2014</year>
<volume>29</volume>
<fpage>518</fpage>
<lpage>526</lpage>
<pub-id pub-id-type="pmid">24822250</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duran</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mencacci</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Angeli</surname>
<given-names>AV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The glucocerobrosidase E326K variant predisposes to Parkinson’s disease, but does not cause Gaucher’s disease</article-title>
<source>Mov Disord</source>
<year>2013</year>
<volume>28</volume>
<fpage>232</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="pmid">23225227</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grace</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Ashton-Prolla</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pastores</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Soni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Desnick</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Non-pseudogene-derived complex acid beta-glucosidase mutations causing mild type 1 and severe type 2 gaucher disease</article-title>
<source>J Clin Invest</source>
<year>1999</year>
<volume>103</volume>
<fpage>817</fpage>
<lpage>823</lpage>
<pub-id pub-id-type="pmid">10079102</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montfort</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chabás</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vilageliu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Grinberg</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Functional analysis of 13 GBA mutant alleles identified in Gaucher disease patients: pathogenic changes and “modifier” polymorphisms</article-title>
<source>Hum Mutat</source>
<year>2004</year>
<volume>23</volume>
<fpage>567</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="pmid">15146461</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liou</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Grabowski</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Is E326K glucocerebrosidase a polymorphic or pathological variant?</article-title>
<source>Mol Genet Metab</source>
<year>2012</year>
<volume>105</volume>
<fpage>528</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="pmid">22227325</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McNeill</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Magalhaes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells</article-title>
<source>Brain</source>
<year>2014</year>
<volume>137</volume>
<fpage>1481</fpage>
<lpage>1495</lpage>
<pub-id pub-id-type="pmid">24574503</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamb</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>The autophagosome: origins unknown, biogenesis complex</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2013</year>
<volume>14</volume>
<fpage>759</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="pmid">24201109</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koga</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kaushik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Altered lipid content inhibits autophagic vesicular fusion</article-title>
<source>FASEB J</source>
<year>2010</year>
<volume>24</volume>
<fpage>3052</fpage>
<lpage>3065</lpage>
<pub-id pub-id-type="pmid">20375270</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Massey</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy</article-title>
<source>EMBO J</source>
<year>2006</year>
<volume>25</volume>
<fpage>3921</fpage>
<lpage>3933</lpage>
<pub-id pub-id-type="pmid">16917501</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez-Navarro</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kaushik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Koga</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibitory effect of dietary lipids on chaperone-mediated autophagy</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>e705</fpage>
<lpage>E714</lpage>
<pub-id pub-id-type="pmid">22331875</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fabelo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Martín</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Santpere</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease</article-title>
<source>Mol Med</source>
<year>2011</year>
<volume>17</volume>
<fpage>1107</fpage>
<lpage>1118</lpage>
<pub-id pub-id-type="pmid">21717034</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brockmann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hilker</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pilatus</surname>
<given-names>U</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GBA-associated PD. Neurodegeneration, altered membrane metabolism, and lack of energy failure</article-title>
<source>Neurology</source>
<year>2012</year>
<volume>79</volume>
<fpage>213</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="pmid">22722629</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>FIG. 1</label>
<caption>
<p>Plot of GCase activity against GlcCer levels for control, PD+GBA, and PD samples in putamen (
<bold>A</bold>
) and cerebellum (
<bold>B</bold>
). Relationship between GCase activity
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
and GlcCer for each heterozygote
<italic>GBA</italic>
mutation is shown in the right panel. [Color figure can be viewed in the online issue, which is available at
<ext-link ext-link-type="uri" xlink:href="http://wileyonlinelibrary.com">wileyonlinelibrary.com</ext-link>
.]</p>
</caption>
<graphic xlink:href="emss-64556-f0001"></graphic>
</fig>
<table-wrap id="T1" position="float" orientation="portrait">
<label>Table 1</label>
<caption>
<p>Sphingolipid and ganglioside levels unchanged in PD+GBA brains</p>
</caption>
<table frame="void" rules="none">
<thead>
<tr>
<th align="left" valign="middle" rowspan="1" colspan="1"></th>
<th colspan="3" align="left" valign="middle" rowspan="1">Putamen</th>
<th colspan="3" align="left" valign="middle" rowspan="1">Cerebellum</th>
</tr>
<tr>
<th align="left" valign="middle" rowspan="1" colspan="1">Lipid</th>
<th align="left" valign="middle" rowspan="1" colspan="1">Control (n = 5)</th>
<th align="left" valign="middle" rowspan="1" colspan="1">PD+GBA (n = 5)</th>
<th align="left" valign="middle" rowspan="1" colspan="1">PD (n = 7)</th>
<th align="left" valign="middle" rowspan="1" colspan="1">Control (n = 7)</th>
<th align="left" valign="middle" rowspan="1" colspan="1">PD+GBA (n = 14)</th>
<th align="left" valign="middle" rowspan="1" colspan="1">PD (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Total GlcCer</td>
<td align="left" valign="middle" rowspan="1" colspan="1">7.66 ± 1.23</td>
<td align="left" valign="middle" rowspan="1" colspan="1">5.25 ± 0.78</td>
<td align="left" valign="middle" rowspan="1" colspan="1">5.56 ± 0.99</td>
<td align="left" valign="middle" rowspan="1" colspan="1">3.38 ± 0.32</td>
<td align="left" valign="middle" rowspan="1" colspan="1">4.16 ± 0.48</td>
<td align="left" valign="middle" rowspan="1" colspan="1">2.94 ± 0.40</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C16:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.42 ± 0.10</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.31 ± 0.11</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.15 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.29 ± 0.05</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.29 ± 0.04</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.19 ± 0.04</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C18:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">4.31 ± 0.88</td>
<td align="left" valign="middle" rowspan="1" colspan="1">2.73 ± 0.55</td>
<td align="left" valign="middle" rowspan="1" colspan="1">2.48 ± 0.11</td>
<td align="left" valign="middle" rowspan="1" colspan="1">2.08 ± 0.17</td>
<td align="left" valign="middle" rowspan="1" colspan="1">2.35 ± 0.33</td>
<td align="left" valign="middle" rowspan="1" colspan="1">1.57 ± 0.23</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C20:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.30 ± 0.08</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.19 ± 0.08</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.14 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.18 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.16 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.15 ± 0.03</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C22:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.12 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.16 ± 0.05</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.08 ± 0.05</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.01 ± 0.01</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.03 ± 0.01</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.00 ± 0.00</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C23:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.25 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.16 ± 0.03</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.26 ± 0.08</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.05 ± 0.02</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.10 ± 0.02</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.07 ± 0.01</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C24:1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">1.62 ± 0.21</td>
<td align="left" valign="middle" rowspan="1" colspan="1">1.21 ± 0.38</td>
<td align="left" valign="middle" rowspan="1" colspan="1">1.83 ± 0.65</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.61 ± 0.10</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.88 ± 0.15</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.74 ± 0.12</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcCer C24:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.64 ± 0.06</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.49 ± 0.07</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.63 ± 0.22</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.17 ± 0.04</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.36 ± 0.04
<xref ref-type="table-fn" rid="TFN2">*</xref>
</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.21 ± 0.04</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GlcSph</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.14 ± 0.07</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.17 ± 0.08</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.35 ± 0.15</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.27 ± 0.06</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.20 ± 0.06</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.23 ± 0.06</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">LacCer</td>
<td align="left" valign="middle" rowspan="1" colspan="1">172 ± 53</td>
<td align="left" valign="middle" rowspan="1" colspan="1">203 ± 37</td>
<td align="left" valign="middle" rowspan="1" colspan="1">283 ± 81</td>
<td align="left" valign="middle" rowspan="1" colspan="1">219 ± 16</td>
<td align="left" valign="middle" rowspan="1" colspan="1">222 ± 22</td>
<td align="left" valign="middle" rowspan="1" colspan="1">213 ± 13</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GM2 C18:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">386 ± 122</td>
<td align="left" valign="middle" rowspan="1" colspan="1">530 ± 53</td>
<td align="left" valign="middle" rowspan="1" colspan="1">498 ± 39</td>
<td align="left" valign="middle" rowspan="1" colspan="1">468 ± 30</td>
<td align="left" valign="middle" rowspan="1" colspan="1">468 ± 33</td>
<td align="left" valign="middle" rowspan="1" colspan="1">504 ± 45</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GM3 C18:0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">95 ± 41</td>
<td align="left" valign="middle" rowspan="1" colspan="1">135 ± 26</td>
<td align="left" valign="middle" rowspan="1" colspan="1">108 ± 24</td>
<td align="left" valign="middle" rowspan="1" colspan="1">90 ± 9</td>
<td align="left" valign="middle" rowspan="1" colspan="1">76 ± 10</td>
<td align="left" valign="middle" rowspan="1" colspan="1">103 ± 14</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Sphingomyelin</td>
<td align="left" valign="middle" rowspan="1" colspan="1">26.4 ± 7.0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">29.9 ± 2.0</td>
<td align="left" valign="middle" rowspan="1" colspan="1">31.6 ± 0.9</td>
<td align="left" valign="middle" rowspan="1" colspan="1">34.6 ± 1.2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">36.7 ± 1.4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">38.4 ± 2.6</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TFN1">
<p id="P21">Total glucosylceramide (GlcCer) and the different GlcCer species (C16:0, C18:0, C20:0, C22:0, C23:0, C24:0, C24:1, C24:0), glucosylspingosine (GlcSph) lactosylceramide (LacCer), GM2, GM3, and sphingomyelin were analyzed by LC-MS/MS. Units are ng lipid/mg protein, except GM2/GM3, μg/mg protein; sphingomyelin, mg/mg protein. Data are mean ± SEM.</p>
</fn>
<fn id="TFN2">
<label>*</label>
<p id="P22">
<italic>P</italic>
< 0.05 vs. control as determined by one-way analysis of variance followed by Tukey HSD test.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000468 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000468 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4529481
   |texte=   No Evidence for Substrate Accumulation in Parkinson Brains With GBA Mutations
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:26096906" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024