Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Early electrophysiological and histologic changes after global Cerebral ischemia in rats

Identifieur interne : 007604 ( Main/Merge ); précédent : 007603; suivant : 007605

Early electrophysiological and histologic changes after global Cerebral ischemia in rats

Auteurs : R. G. Geocadin [États-Unis] ; J. Muthuswamy [États-Unis] ; D. L. Sherman [États-Unis] ; N. V. Thakor [États-Unis] ; D. F. Hanley [États-Unis]

Source :

RBID : Pascal:00-0252688

Descripteurs français

English descriptors

Abstract

INTRODUCTION: Cerebral anoxia is fundamental to morbidity and mortality after resuscitation from cardiac arrest. With no proven effective primary therapy for post-anoxic brain injury, the goal of neurologic care are supportive, to provide prognosis and prevention of further complications. With the multifaceted approach using electroencephalography (EEC), somatosensory evoked potentials (SEP), multiunit recordings, behavioral and histologic assessment, we investigated the hyperacute recovery period after resuscitation from cardiac arrest in a rat model to define the value of EEG and SEP in assessing neurologic injury. METHODS: Two cohorts of rats were subjected to sham and graded asphyxic-cardiac arrest. EEG was collected during baseline, at injury, and 90 minutes into recovery in the first rat cohort. EEG bursting during the first 90 minutes of recovery was visually analyzed and correlated with the neurologic recovery at 24 hours after injury. The neurologic recovery was assessed using a neurodeficit score (NDS) with 80 as normal and 0 as brain dead. The next rat cohort subjected to asphyxic-cardiac arrest was studied using SEP and multiunit recording in the VPL; brain histologic studies were performed at 4 hours after the asphyxia. RESULTS: The first rat cohort subjected to graded asphyxic-cardiac arrest emerged from EEG isoelectricity by burst-suppression pattern during the first 90 minutes after asphyxia. Six rats in the good outcome group (NDS >60) showed increased frequency of bursting, leading to return of EEG background activity. Six rats with a bad outcome (NDS <60) had low-intensity and persistent bursting without return of EEG background activity within 90 minutes of observation. Visual assessment showed increased EEG peak burst counts during the first 90 minutes of recovery for the rats with a good outcome compared with the rats with a bad outcome. In the second cohort, the rats were subjected to 3 minutes, 5 minutes, and 7 minutes of asphyxia. The N20 recovered to 60% of baseline in all three cases. The recovery profile of VPL is similar to that of cortical N20 for the animal with 3 minutes of asphyxia. However, VPL response is suppressed after 7 minutes of asphyxia leading to a divergence in the rate of recovery of the cortical N20 and VPL response. In both the animals (with mild and intermediate injury) in which the early response in VPL recovered to more than 50% of baseline, the recovery profile was similar to the N20 in cortical evoked potential (EP). The rats were killed 4 hours after asphyxia and the hematoxylin and eosin stain performed on the brains showed evidence of neuronal injury in the thalamic reticular nucleus (TRN) which seemed to correlate with the duration of asphyxia. CONCLUSION: We present a multimodality assessment of early neurologic recovery following resuscitation from cardiac arrest. The recovery of bursting and high-frequency oscillations may be regulated by interneurons in the TRN. The early selective vulnerability of these interneurons in the TRN may be crucial to the early neurologic recovery as assessed by EP, multiunit recording, EEG, and neurologic behavioral recovery.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0252688

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Early electrophysiological and histologic changes after global Cerebral ischemia in rats</title>
<author>
<name sortKey="Geocadin, R G" sort="Geocadin, R G" uniqKey="Geocadin R" first="R. G." last="Geocadin">R. G. Geocadin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Neurology, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muthuswamy, J" sort="Muthuswamy, J" uniqKey="Muthuswamy J" first="J." last="Muthuswamy">J. Muthuswamy</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sherman, D L" sort="Sherman, D L" uniqKey="Sherman D" first="D. L." last="Sherman">D. L. Sherman</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thakor, N V" sort="Thakor, N V" uniqKey="Thakor N" first="N. V." last="Thakor">N. V. Thakor</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanley, D F" sort="Hanley, D F" uniqKey="Hanley D" first="D. F." last="Hanley">D. F. Hanley</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Neurology, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0252688</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0252688 INIST</idno>
<idno type="RBID">Pascal:00-0252688</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002C20</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000101</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">002C12</idno>
<idno type="wicri:doubleKey">0885-3185:2000:Geocadin R:early:electrophysiological:and</idno>
<idno type="wicri:Area/Main/Merge">007604</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Early electrophysiological and histologic changes after global Cerebral ischemia in rats</title>
<author>
<name sortKey="Geocadin, R G" sort="Geocadin, R G" uniqKey="Geocadin R" first="R. G." last="Geocadin">R. G. Geocadin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Neurology, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muthuswamy, J" sort="Muthuswamy, J" uniqKey="Muthuswamy J" first="J." last="Muthuswamy">J. Muthuswamy</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sherman, D L" sort="Sherman, D L" uniqKey="Sherman D" first="D. L." last="Sherman">D. L. Sherman</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thakor, N V" sort="Thakor, N V" uniqKey="Thakor N" first="N. V." last="Thakor">N. V. Thakor</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanley, D F" sort="Hanley, D F" uniqKey="Hanley D" first="D. F." last="Hanley">D. F. Hanley</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Neurology, The Johns Hopkins University School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Movement disorders</title>
<title level="j" type="abbreviated">Mov. disord.</title>
<idno type="ISSN">0885-3185</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Movement disorders</title>
<title level="j" type="abbreviated">Mov. disord.</title>
<idno type="ISSN">0885-3185</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal</term>
<term>Brain (vertebrata)</term>
<term>Electroencephalography</term>
<term>Experimental disease</term>
<term>Exploration</term>
<term>Ischemia</term>
<term>Pathology</term>
<term>Rat</term>
<term>Somatosensory evoked potential</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ischémie</term>
<term>Encéphale</term>
<term>Electroencéphalographie</term>
<term>Potentiel évoqué somatosensoriel</term>
<term>Anatomopathologie</term>
<term>Pathologie expérimentale</term>
<term>Exploration</term>
<term>Animal</term>
<term>Rat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">INTRODUCTION: Cerebral anoxia is fundamental to morbidity and mortality after resuscitation from cardiac arrest. With no proven effective primary therapy for post-anoxic brain injury, the goal of neurologic care are supportive, to provide prognosis and prevention of further complications. With the multifaceted approach using electroencephalography (EEC), somatosensory evoked potentials (SEP), multiunit recordings, behavioral and histologic assessment, we investigated the hyperacute recovery period after resuscitation from cardiac arrest in a rat model to define the value of EEG and SEP in assessing neurologic injury. METHODS: Two cohorts of rats were subjected to sham and graded asphyxic-cardiac arrest. EEG was collected during baseline, at injury, and 90 minutes into recovery in the first rat cohort. EEG bursting during the first 90 minutes of recovery was visually analyzed and correlated with the neurologic recovery at 24 hours after injury. The neurologic recovery was assessed using a neurodeficit score (NDS) with 80 as normal and 0 as brain dead. The next rat cohort subjected to asphyxic-cardiac arrest was studied using SEP and multiunit recording in the VPL; brain histologic studies were performed at 4 hours after the asphyxia. RESULTS: The first rat cohort subjected to graded asphyxic-cardiac arrest emerged from EEG isoelectricity by burst-suppression pattern during the first 90 minutes after asphyxia. Six rats in the good outcome group (NDS >60) showed increased frequency of bursting, leading to return of EEG background activity. Six rats with a bad outcome (NDS <60) had low-intensity and persistent bursting without return of EEG background activity within 90 minutes of observation. Visual assessment showed increased EEG peak burst counts during the first 90 minutes of recovery for the rats with a good outcome compared with the rats with a bad outcome. In the second cohort, the rats were subjected to 3 minutes, 5 minutes, and 7 minutes of asphyxia. The N20 recovered to 60% of baseline in all three cases. The recovery profile of VPL is similar to that of cortical N20 for the animal with 3 minutes of asphyxia. However, VPL response is suppressed after 7 minutes of asphyxia leading to a divergence in the rate of recovery of the cortical N20 and VPL response. In both the animals (with mild and intermediate injury) in which the early response in VPL recovered to more than 50% of baseline, the recovery profile was similar to the N20 in cortical evoked potential (EP). The rats were killed 4 hours after asphyxia and the hematoxylin and eosin stain performed on the brains showed evidence of neuronal injury in the thalamic reticular nucleus (TRN) which seemed to correlate with the duration of asphyxia. CONCLUSION: We present a multimodality assessment of early neurologic recovery following resuscitation from cardiac arrest. The recovery of bursting and high-frequency oscillations may be regulated by interneurons in the TRN. The early selective vulnerability of these interneurons in the TRN may be crucial to the early neurologic recovery as assessed by EP, multiunit recording, EEG, and neurologic behavioral recovery.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Geocadin, R G" sort="Geocadin, R G" uniqKey="Geocadin R" first="R. G." last="Geocadin">R. G. Geocadin</name>
</region>
<name sortKey="Hanley, D F" sort="Hanley, D F" uniqKey="Hanley D" first="D. F." last="Hanley">D. F. Hanley</name>
<name sortKey="Muthuswamy, J" sort="Muthuswamy, J" uniqKey="Muthuswamy J" first="J." last="Muthuswamy">J. Muthuswamy</name>
<name sortKey="Sherman, D L" sort="Sherman, D L" uniqKey="Sherman D" first="D. L." last="Sherman">D. L. Sherman</name>
<name sortKey="Thakor, N V" sort="Thakor, N V" uniqKey="Thakor N" first="N. V." last="Thakor">N. V. Thakor</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007604 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 007604 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     Pascal:00-0252688
   |texte=   Early electrophysiological and histologic changes after global Cerebral ischemia in rats
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024