Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides.

Identifieur interne : 002400 ( PubMed/Curation ); précédent : 002399; suivant : 002401

Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides.

Auteurs : Herbert Oberacher [Autriche] ; Walther Parson ; Peter J. Oefner ; Bettina M. Mayr ; Christian G. Huber

Source :

RBID : pubmed:15047056

Descripteurs français

English descriptors

Abstract

An algorithm for the comparative sequencing (COMPAS) of oligonucleotides is shown to be suitable for the sequence verification of nucleic acids ranging in length from a few to 80 nucleotides. The algorithm is based on the matching of a fragment ion spectrum generated by collision-induced dissociation to m/z values predicted from a known reference sequence employing established fragmentation pathways. Prior to mass spectrometric investigation, the oligonucleotides were on-line purified by ion-pair reversed-phase high-performance liquid chromatography using monolithic separation columns. This study evaluated the potential and the limits of COMPAS regarding the length and the charge state of oligonucleotides, the selected collision energy, and the analyzed amount of sample using a quadrupole ion trap mass spectrometer. The results revealed that oligonucleotides could be very reliably re-sequenced up to 60-mers, although the algorithm was successfully used to even verify sequences up to 80-mers. The relative collision energy was typically in the range between 13 and 20%, which allowed in most cases a verification of the reference sequence in a window of at least three consecutive collision energies. To select a proper charge state for fragmentation, a compromise had to be found between high signal intensity and low charge state. Furthermore, by reducing the eluent flow rate during elution of the oligonucleotide, the sequence of a 50-mer was successfully verified from the analysis of 295 fmol of the raw product. COMPAS was proven to be reproducible and was applied to the genotyping of the polymorphic, Y-chromosomal locus M9 contained in a 62-base pair polymerase chain reaction product.

DOI: 10.1016/j.jasms.2003.12.002
PubMed: 15047056

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15047056

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides.</title>
<author>
<name sortKey="Oberacher, Herbert" sort="Oberacher, Herbert" uniqKey="Oberacher H" first="Herbert" last="Oberacher">Herbert Oberacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Legal Medicine, Leopold Franzens University, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Legal Medicine, Leopold Franzens University, Innsbruck</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parson, Walther" sort="Parson, Walther" uniqKey="Parson W" first="Walther" last="Parson">Walther Parson</name>
</author>
<author>
<name sortKey="Oefner, Peter J" sort="Oefner, Peter J" uniqKey="Oefner P" first="Peter J" last="Oefner">Peter J. Oefner</name>
</author>
<author>
<name sortKey="Mayr, Bettina M" sort="Mayr, Bettina M" uniqKey="Mayr B" first="Bettina M" last="Mayr">Bettina M. Mayr</name>
</author>
<author>
<name sortKey="Huber, Christian G" sort="Huber, Christian G" uniqKey="Huber C" first="Christian G" last="Huber">Christian G. Huber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15047056</idno>
<idno type="pmid">15047056</idno>
<idno type="doi">10.1016/j.jasms.2003.12.002</idno>
<idno type="wicri:Area/PubMed/Corpus">002400</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002400</idno>
<idno type="wicri:Area/PubMed/Curation">002400</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002400</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides.</title>
<author>
<name sortKey="Oberacher, Herbert" sort="Oberacher, Herbert" uniqKey="Oberacher H" first="Herbert" last="Oberacher">Herbert Oberacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Legal Medicine, Leopold Franzens University, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Legal Medicine, Leopold Franzens University, Innsbruck</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parson, Walther" sort="Parson, Walther" uniqKey="Parson W" first="Walther" last="Parson">Walther Parson</name>
</author>
<author>
<name sortKey="Oefner, Peter J" sort="Oefner, Peter J" uniqKey="Oefner P" first="Peter J" last="Oefner">Peter J. Oefner</name>
</author>
<author>
<name sortKey="Mayr, Bettina M" sort="Mayr, Bettina M" uniqKey="Mayr B" first="Bettina M" last="Mayr">Bettina M. Mayr</name>
</author>
<author>
<name sortKey="Huber, Christian G" sort="Huber, Christian G" uniqKey="Huber C" first="Christian G" last="Huber">Christian G. Huber</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Society for Mass Spectrometry</title>
<idno type="ISSN">1044-0305</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Automation (methods)</term>
<term>Base Sequence</term>
<term>Mass Spectrometry (methods)</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotides (analysis)</term>
<term>Oligonucleotides (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN ()</term>
<term>Automatisation ()</term>
<term>Données de séquences moléculaires</term>
<term>Oligonucléotides (analyse)</term>
<term>Oligonucléotides (génétique)</term>
<term>Spectrométrie de masse ()</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Oligonucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oligonucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Automation</term>
<term>Mass Spectrometry</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN</term>
<term>Automatisation</term>
<term>Données de séquences moléculaires</term>
<term>Spectrométrie de masse</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An algorithm for the comparative sequencing (COMPAS) of oligonucleotides is shown to be suitable for the sequence verification of nucleic acids ranging in length from a few to 80 nucleotides. The algorithm is based on the matching of a fragment ion spectrum generated by collision-induced dissociation to m/z values predicted from a known reference sequence employing established fragmentation pathways. Prior to mass spectrometric investigation, the oligonucleotides were on-line purified by ion-pair reversed-phase high-performance liquid chromatography using monolithic separation columns. This study evaluated the potential and the limits of COMPAS regarding the length and the charge state of oligonucleotides, the selected collision energy, and the analyzed amount of sample using a quadrupole ion trap mass spectrometer. The results revealed that oligonucleotides could be very reliably re-sequenced up to 60-mers, although the algorithm was successfully used to even verify sequences up to 80-mers. The relative collision energy was typically in the range between 13 and 20%, which allowed in most cases a verification of the reference sequence in a window of at least three consecutive collision energies. To select a proper charge state for fragmentation, a compromise had to be found between high signal intensity and low charge state. Furthermore, by reducing the eluent flow rate during elution of the oligonucleotide, the sequence of a 50-mer was successfully verified from the analysis of 295 fmol of the raw product. COMPAS was proven to be reproducible and was applied to the genotyping of the polymorphic, Y-chromosomal locus M9 contained in a 62-base pair polymerase chain reaction product.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15047056</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1044-0305</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2004</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the American Society for Mass Spectrometry</Title>
<ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation>
</Journal>
<ArticleTitle>Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides.</ArticleTitle>
<Pagination>
<MedlinePgn>510-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>An algorithm for the comparative sequencing (COMPAS) of oligonucleotides is shown to be suitable for the sequence verification of nucleic acids ranging in length from a few to 80 nucleotides. The algorithm is based on the matching of a fragment ion spectrum generated by collision-induced dissociation to m/z values predicted from a known reference sequence employing established fragmentation pathways. Prior to mass spectrometric investigation, the oligonucleotides were on-line purified by ion-pair reversed-phase high-performance liquid chromatography using monolithic separation columns. This study evaluated the potential and the limits of COMPAS regarding the length and the charge state of oligonucleotides, the selected collision energy, and the analyzed amount of sample using a quadrupole ion trap mass spectrometer. The results revealed that oligonucleotides could be very reliably re-sequenced up to 60-mers, although the algorithm was successfully used to even verify sequences up to 80-mers. The relative collision energy was typically in the range between 13 and 20%, which allowed in most cases a verification of the reference sequence in a window of at least three consecutive collision energies. To select a proper charge state for fragmentation, a compromise had to be found between high signal intensity and low charge state. Furthermore, by reducing the eluent flow rate during elution of the oligonucleotide, the sequence of a 50-mer was successfully verified from the analysis of 295 fmol of the raw product. COMPAS was proven to be reproducible and was applied to the genotyping of the polymorphic, Y-chromosomal locus M9 contained in a 62-base pair polymerase chain reaction product.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oberacher</LastName>
<ForeName>Herbert</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Legal Medicine, Leopold Franzens University, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parson</LastName>
<ForeName>Walther</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oefner</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mayr</LastName>
<ForeName>Bettina M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Christian G</ForeName>
<Initials>CG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM28428</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HG00205</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Soc Mass Spectrom</MedlineTA>
<NlmUniqueID>9010412</NlmUniqueID>
<ISSNLinking>1044-0305</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001331" MajorTopicYN="N">Automation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2003</Year>
<Month>12</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2003</Year>
<Month>12</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15047056</ArticleId>
<ArticleId IdType="doi">10.1016/j.jasms.2003.12.002</ArticleId>
<ArticleId IdType="pii">S1044030503008730</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2001;15(13):1045-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 1996 Nov;31(11):1203-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8946729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1996 Jul 1;68(13):1989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9027217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Dec 25;782(1-2):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12457998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mass Spectrom Rev. 1996;15(2):67-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27082318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2000 Sep 15;72(18):4386-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11008774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2000 Sep 1;72(17):4033-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10994962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1999 Jun;20(6):1258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10380766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 May;12(5):580-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11349956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Dec 20;230(4732):1350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2001 Feb;30(2):318-22, 324, 326 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11233601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 Feb;12(2):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2003 Jan;21(1):86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12497635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2318-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7534419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):e67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2002 Jan 1;74(1):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11795796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2001 Oct 15;40(20):3828-3830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11668546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2001 Nov 1;73(21):5109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11721907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jul 8;234(2):177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10395891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 2003 Jan;38(1):108-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12526012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Oct 23;282(5389):682-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mass Spectrom Rev. 2002 Nov-Dec;21(6):388-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12666148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2001;15(13):1053-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2002 Mar;13(3):200-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11908799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2001 Jun;17(6):475-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11385706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 16;291(5507):1304-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2002 Mar;13(3):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11908798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1998 Dec 15;70(24):5288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Mass Spectrom. 1994 Jun;23(6):320-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8038225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1998 Dec;16(13):1352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9853618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2002;16(24):2278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12478572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):860-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002400 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002400 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15047056
   |texte=   Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15047056" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021