Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.

Identifieur interne : 002365 ( PubMed/Curation ); précédent : 002364; suivant : 002366

DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.

Auteurs : Melanie A. O'Neill [États-Unis] ; Jacqueline K. Barton

Source :

RBID : pubmed:15479072

Descripteurs français

English descriptors

Abstract

We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)nG (n = 0-4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT.

DOI: 10.1021/ja0455897
PubMed: 15479072

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15479072

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.</title>
<author>
<name sortKey="O Neill, Melanie A" sort="O Neill, Melanie A" uniqKey="O Neill M" first="Melanie A" last="O'Neill">Melanie A. O'Neill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15479072</idno>
<idno type="pmid">15479072</idno>
<idno type="doi">10.1021/ja0455897</idno>
<idno type="wicri:Area/PubMed/Corpus">002365</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002365</idno>
<idno type="wicri:Area/PubMed/Curation">002365</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.</title>
<author>
<name sortKey="O Neill, Melanie A" sort="O Neill, Melanie A" uniqKey="O Neill M" first="Melanie A" last="O'Neill">Melanie A. O'Neill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Chemical Society</title>
<idno type="ISSN">0002-7863</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2-Aminopurine (chemistry)</term>
<term>Cold Temperature</term>
<term>DNA (chemistry)</term>
<term>Fluorescence Polarization</term>
<term>Nucleic Acid Conformation</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>Amino-2 purine ()</term>
<term>Basse température</term>
<term>Conformation d'acide nucléique</term>
<term>Polarisation de fluorescence</term>
<term>Spectrométrie de fluorescence</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>2-Aminopurine</term>
<term>DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Fluorescence Polarization</term>
<term>Nucleic Acid Conformation</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Amino-2 purine</term>
<term>Basse température</term>
<term>Conformation d'acide nucléique</term>
<term>Polarisation de fluorescence</term>
<term>Spectrométrie de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)nG (n = 0-4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15479072</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0002-7863</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>126</Volume>
<Issue>41</Issue>
<PubDate>
<Year>2004</Year>
<Month>Oct</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation>
</Journal>
<ArticleTitle>DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.</ArticleTitle>
<Pagination>
<MedlinePgn>13234-5</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)nG (n = 0-4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Neill</LastName>
<ForeName>Melanie A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barton</LastName>
<ForeName>Jacqueline K</ForeName>
<Initials>JK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>452-06-2</RegistryNumber>
<NameOfSubstance UI="D015075">2-Aminopurine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015075" MajorTopicYN="N">2-Aminopurine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005454" MajorTopicYN="N">Fluorescence Polarization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15479072</ArticleId>
<ArticleId IdType="doi">10.1021/ja0455897</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15479072
   |texte=   DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15479072" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021