Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthetic design of strong promoters.

Identifieur interne : 001F68 ( PubMed/Curation ); précédent : 001F67; suivant : 001F69

Synthetic design of strong promoters.

Auteurs : Michael R. Schlabach [États-Unis] ; Jimmy K. Hu ; Mamie Li ; Stephen J. Elledge

Source :

RBID : pubmed:20133776

Descripteurs français

English descriptors

Abstract

We have taken a synthetic biology approach to the generation and screening of transcription factor binding sites for activity in human cells. All possible 10-mer DNA sequences were printed on microarrays as 100-mers containing 10 repeats of the same sequence in tandem, yielding an oligonucleotide library of 52,429 unique sequences. This library of potential enhancers was introduced into a retroviral vector and screened in multiple cell lines for the ability to activate GFP transcription from a minimal CMV promoter. With this method, we isolated 100 bp synthetic enhancer elements that were as potent at activating transcription as the WT CMV immediate early enhancer. The activity of the recovered elements was strongly dependent on the cell line in which they were recovered. None of the elements were capable of achieving the same levels of transcriptional enhancement across all tested cell lines as the CMV enhancer. A second screen, for enhancers capable of synergizing with the elements from the original screen, yielded compound enhancers that were capable of twofold greater enhancement activity than the CMV enhancer, with higher levels of activity than the original synthetic enhancer across multiple cell lines. These findings suggest that the 10-mer synthetic enhancer space is sufficiently rich to allow the creation of synthetic promoters of all strengths in most, if not all, cell types.

DOI: 10.1073/pnas.0914803107
PubMed: 20133776

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20133776

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthetic design of strong promoters.</title>
<author>
<name sortKey="Schlabach, Michael R" sort="Schlabach, Michael R" uniqKey="Schlabach M" first="Michael R" last="Schlabach">Michael R. Schlabach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jimmy K" sort="Hu, Jimmy K" uniqKey="Hu J" first="Jimmy K" last="Hu">Jimmy K. Hu</name>
</author>
<author>
<name sortKey="Li, Mamie" sort="Li, Mamie" uniqKey="Li M" first="Mamie" last="Li">Mamie Li</name>
</author>
<author>
<name sortKey="Elledge, Stephen J" sort="Elledge, Stephen J" uniqKey="Elledge S" first="Stephen J" last="Elledge">Stephen J. Elledge</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20133776</idno>
<idno type="pmid">20133776</idno>
<idno type="doi">10.1073/pnas.0914803107</idno>
<idno type="wicri:Area/PubMed/Corpus">001F68</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F68</idno>
<idno type="wicri:Area/PubMed/Curation">001F68</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthetic design of strong promoters.</title>
<author>
<name sortKey="Schlabach, Michael R" sort="Schlabach, Michael R" uniqKey="Schlabach M" first="Michael R" last="Schlabach">Michael R. Schlabach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jimmy K" sort="Hu, Jimmy K" uniqKey="Hu J" first="Jimmy K" last="Hu">Jimmy K. Hu</name>
</author>
<author>
<name sortKey="Li, Mamie" sort="Li, Mamie" uniqKey="Li M" first="Mamie" last="Li">Mamie Li</name>
</author>
<author>
<name sortKey="Elledge, Stephen J" sort="Elledge, Stephen J" uniqKey="Elledge S" first="Stephen J" last="Elledge">Stephen J. Elledge</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Binding Sites (genetics)</term>
<term>Cell Line</term>
<term>Cytomegalovirus (genetics)</term>
<term>Enhancer Elements, Genetic (genetics)</term>
<term>Flow Cytometry</term>
<term>Gene Expression Regulation</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Microarray Analysis (methods)</term>
<term>Oligonucleotides (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse sur microréseau ()</term>
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cytomegalovirus (génétique)</term>
<term>Cytométrie en flux</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Oligonucléotides (génétique)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes</term>
<term>Sites de fixation (génétique)</term>
<term>Souris</term>
<term>Séquences d'acides nucléiques régulatrices (génétique)</term>
<term>Transcription génétique</term>
<term>Éléments activateurs (génétique) (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Green Fluorescent Proteins</term>
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Binding Sites</term>
<term>Cytomegalovirus</term>
<term>Enhancer Elements, Genetic</term>
<term>Promoter Regions, Genetic</term>
<term>Regulatory Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytomegalovirus</term>
<term>Oligonucléotides</term>
<term>Protéines à fluorescence verte</term>
<term>Régions promotrices (génétique)</term>
<term>Sites de fixation</term>
<term>Séquences d'acides nucléiques régulatrices</term>
<term>Éléments activateurs (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microarray Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Flow Cytometry</term>
<term>Gene Expression Regulation</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse sur microréseau</term>
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cytométrie en flux</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have taken a synthetic biology approach to the generation and screening of transcription factor binding sites for activity in human cells. All possible 10-mer DNA sequences were printed on microarrays as 100-mers containing 10 repeats of the same sequence in tandem, yielding an oligonucleotide library of 52,429 unique sequences. This library of potential enhancers was introduced into a retroviral vector and screened in multiple cell lines for the ability to activate GFP transcription from a minimal CMV promoter. With this method, we isolated 100 bp synthetic enhancer elements that were as potent at activating transcription as the WT CMV immediate early enhancer. The activity of the recovered elements was strongly dependent on the cell line in which they were recovered. None of the elements were capable of achieving the same levels of transcriptional enhancement across all tested cell lines as the CMV enhancer. A second screen, for enhancers capable of synergizing with the elements from the original screen, yielded compound enhancers that were capable of twofold greater enhancement activity than the CMV enhancer, with higher levels of activity than the original synthetic enhancer across multiple cell lines. These findings suggest that the 10-mer synthetic enhancer space is sufficiently rich to allow the creation of synthetic promoters of all strengths in most, if not all, cell types.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20133776</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthetic design of strong promoters.</ArticleTitle>
<Pagination>
<MedlinePgn>2538-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0914803107</ELocationID>
<Abstract>
<AbstractText>We have taken a synthetic biology approach to the generation and screening of transcription factor binding sites for activity in human cells. All possible 10-mer DNA sequences were printed on microarrays as 100-mers containing 10 repeats of the same sequence in tandem, yielding an oligonucleotide library of 52,429 unique sequences. This library of potential enhancers was introduced into a retroviral vector and screened in multiple cell lines for the ability to activate GFP transcription from a minimal CMV promoter. With this method, we isolated 100 bp synthetic enhancer elements that were as potent at activating transcription as the WT CMV immediate early enhancer. The activity of the recovered elements was strongly dependent on the cell line in which they were recovered. None of the elements were capable of achieving the same levels of transcriptional enhancement across all tested cell lines as the CMV enhancer. A second screen, for enhancers capable of synergizing with the elements from the original screen, yielded compound enhancers that were capable of twofold greater enhancement activity than the CMV enhancer, with higher levels of activity than the original synthetic enhancer across multiple cell lines. These findings suggest that the 10-mer synthetic enhancer space is sufficiently rich to allow the creation of synthetic promoters of all strengths in most, if not all, cell types.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schlabach</LastName>
<ForeName>Michael R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jimmy K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Mamie</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Elledge</LastName>
<ForeName>Stephen J</ForeName>
<Initials>SJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003587" MajorTopicYN="N">Cytomegalovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004742" MajorTopicYN="N">Enhancer Elements, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046228" MajorTopicYN="N">Microarray Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20133776</ArticleId>
<ArticleId IdType="pii">0914803107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0914803107</ArticleId>
<ArticleId IdType="pmc">PMC2823900</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ther. 2000 Nov;2(5):458-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11082319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Jun;19(3):399-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19701794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cells. 2002;20(2):139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):247-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Mar 26;290(5804):304-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6259538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1986;45(1):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Sep;85(18):6662-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2842787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Oct 6;335(6190):563-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3047590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1319065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Mar 21;275(5307):1784-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Dec;36(12):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15543148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2004 Dec;1(3):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Nov;37(11):1281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W516-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 Nov;3(11):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Nov 7;322(5903):918-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18988847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 8;457(7226):215-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):393-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19265799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 May;27(5):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Oct 9;388(1):56-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19635463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 13;276(15):11719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134034</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001F68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:20133776
   |texte=   Synthetic design of strong promoters.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:20133776" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021