Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection.

Identifieur interne : 001616 ( PubMed/Curation ); précédent : 001615; suivant : 001617

Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection.

Auteurs : Allison L. Totura [États-Unis] ; Alan Whitmore [États-Unis] ; Sudhakar Agnihothram [États-Unis] ; Alexandra Sch Fer [États-Unis] ; Michael G. Katze [États-Unis] ; Mark T. Heise ; Ralph S. Baric [États-Unis]

Source :

RBID : pubmed:26015500

Descripteurs français

English descriptors

Abstract

Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3(-/-), TLR4(-/-), and TRAM(-/-) mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF(-/-) mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF(-/-) mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections.

DOI: 10.1128/mBio.00638-15
PubMed: 26015500

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26015500

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection.</title>
<author>
<name sortKey="Totura, Allison L" sort="Totura, Allison L" uniqKey="Totura A" first="Allison L" last="Totura">Allison L. Totura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Whitmore, Alan" sort="Whitmore, Alan" uniqKey="Whitmore A" first="Alan" last="Whitmore">Alan Whitmore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Agnihothram, Sudhakar" sort="Agnihothram, Sudhakar" uniqKey="Agnihothram S" first="Sudhakar" last="Agnihothram">Sudhakar Agnihothram</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, Washington, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Heise, Mark T" sort="Heise, Mark T" uniqKey="Heise M" first="Mark T" last="Heise">Mark T. Heise</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="1">
<nlm:affiliation>rbaric@email.unc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26015500</idno>
<idno type="pmid">26015500</idno>
<idno type="doi">10.1128/mBio.00638-15</idno>
<idno type="wicri:Area/PubMed/Corpus">001616</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001616</idno>
<idno type="wicri:Area/PubMed/Curation">001616</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001616</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection.</title>
<author>
<name sortKey="Totura, Allison L" sort="Totura, Allison L" uniqKey="Totura A" first="Allison L" last="Totura">Allison L. Totura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Whitmore, Alan" sort="Whitmore, Alan" uniqKey="Whitmore A" first="Alan" last="Whitmore">Alan Whitmore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Agnihothram, Sudhakar" sort="Agnihothram, Sudhakar" uniqKey="Agnihothram S" first="Sudhakar" last="Agnihothram">Sudhakar Agnihothram</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, Washington, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Heise, Mark T" sort="Heise, Mark T" uniqKey="Heise M" first="Mark T" last="Heise">Mark T. Heise</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="1">
<nlm:affiliation>rbaric@email.unc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport (deficiency)</term>
<term>Adaptor Proteins, Vesicular Transport (metabolism)</term>
<term>Animals</term>
<term>Body Weight</term>
<term>Disease Susceptibility</term>
<term>Immunity, Innate</term>
<term>Lung (pathology)</term>
<term>Lung (physiopathology)</term>
<term>Mice, Knockout</term>
<term>Receptors, Interleukin (deficiency)</term>
<term>Receptors, Interleukin (metabolism)</term>
<term>Respiratory Function Tests</term>
<term>SARS Virus (immunology)</term>
<term>Signal Transduction</term>
<term>Survival Analysis</term>
<term>Toll-Like Receptor 3 (deficiency)</term>
<term>Toll-Like Receptor 3 (metabolism)</term>
<term>Toll-Like Receptor 4 (deficiency)</term>
<term>Toll-Like Receptor 4 (metabolism)</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de survie</term>
<term>Animaux</term>
<term>Charge virale</term>
<term>Immunité innée</term>
<term>Poids du corps</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (physiopathologie)</term>
<term>Protéines adaptatrices du transport vésiculaire (déficit)</term>
<term>Protéines adaptatrices du transport vésiculaire (métabolisme)</term>
<term>Récepteur de type Toll-3 (déficit)</term>
<term>Récepteur de type Toll-3 (métabolisme)</term>
<term>Récepteur de type Toll-4 (déficit)</term>
<term>Récepteur de type Toll-4 (métabolisme)</term>
<term>Récepteurs aux interleukines (déficit)</term>
<term>Récepteurs aux interleukines (métabolisme)</term>
<term>Souris knockout</term>
<term>Susceptibilité à une maladie</term>
<term>Tests de la fonction respiratoire</term>
<term>Transduction du signal</term>
<term>Virus du SRAS (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport</term>
<term>Receptors, Interleukin</term>
<term>Toll-Like Receptor 3</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport</term>
<term>Receptors, Interleukin</term>
<term>Toll-Like Receptor 3</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Protéines adaptatrices du transport vésiculaire</term>
<term>Récepteur de type Toll-3</term>
<term>Récepteur de type Toll-4</term>
<term>Récepteurs aux interleukines</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines adaptatrices du transport vésiculaire</term>
<term>Récepteur de type Toll-3</term>
<term>Récepteur de type Toll-4</term>
<term>Récepteurs aux interleukines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Disease Susceptibility</term>
<term>Immunity, Innate</term>
<term>Mice, Knockout</term>
<term>Respiratory Function Tests</term>
<term>Signal Transduction</term>
<term>Survival Analysis</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de survie</term>
<term>Animaux</term>
<term>Charge virale</term>
<term>Immunité innée</term>
<term>Poids du corps</term>
<term>Souris knockout</term>
<term>Susceptibilité à une maladie</term>
<term>Tests de la fonction respiratoire</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3(-/-), TLR4(-/-), and TRAM(-/-) mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF(-/-) mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF(-/-) mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26015500</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection.</ArticleTitle>
<Pagination>
<MedlinePgn>e00638-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00638-15</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e00638-15</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3(-/-), TLR4(-/-), and TRAM(-/-) mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF(-/-) mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF(-/-) mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Toll-like receptors are a family of sensor proteins that enable the immune system to differentiate between "self" and "non-self." Agonists and antagonists of TLRs have been proposed to have utility as vaccine adjuvants or antiviral compounds. In the last 15 years, the emergence of highly pathogenic coronaviruses SARS-CoV and MERS-CoV has caused significant disease accompanied by high mortality rates in human populations, but no approved therapeutic treatments or vaccines currently exist. Here, we demonstrate that TLR signaling through the TRIF adaptor protein protects mice from lethal SARS-CoV disease. Our findings indicate that a balanced immune response operating through both TRIF-driven and MyD88-driven pathways likely provides the most effective host cell intrinsic antiviral defense responses to severe SARS-CoV disease, while removal of either branch of TLR signaling causes lethal SARS-CoV disease in our mouse model. These data should inform the design and use of TLR agonists and antagonists in coronavirus-specific vaccine and antiviral strategies.</AbstractText>
<CopyrightInformation>Copyright © 2015 Totura et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Totura</LastName>
<ForeName>Allison L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whitmore</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Agnihothram</LastName>
<ForeName>Sudhakar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schäfer</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Katze</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Seattle, Washington, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heise</LastName>
<ForeName>Mark T</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>rbaric@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN272200800060C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P51 OD010425</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI106772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033942">Adaptor Proteins, Vesicular Transport</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018123">Receptors, Interleukin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C476286">TICAM-1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C476416">TIRP protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C519703">TLR3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493487">Tlr4 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051196">Toll-Like Receptor 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051197">Toll-Like Receptor 4</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>MBio. 2015;6(4):e01120</RefSource>
<PMID Version="1">26265720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>MBio. 2015;6(5):e01303-15</RefSource>
<PMID Version="1">26419878</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D033942" MajorTopicYN="N">Adaptor Proteins, Vesicular Transport</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004198" MajorTopicYN="N">Disease Susceptibility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="Y">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018123" MajorTopicYN="N">Receptors, Interleukin</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012129" MajorTopicYN="N">Respiratory Function Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016019" MajorTopicYN="N">Survival Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051196" MajorTopicYN="N">Toll-Like Receptor 3</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051197" MajorTopicYN="N">Toll-Like Receptor 4</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26015500</ArticleId>
<ArticleId IdType="pii">mBio.00638-15</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00638-15</ArticleId>
<ArticleId IdType="pmc">PMC4447251</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Crit Care Med. 2013 Jan 1;187(1):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013;3:1686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 23;497(7450):498-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(13):7301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23596298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(4). pii: e00271-13. doi: 10.1128/mBio.00271-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23919993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Aug;88(15):8597-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24850731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Sep;95(Pt 9):1870-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24878639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Oct 18;413(6857):732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Dec 15;169(12):6668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2003 Feb;4(2):161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12539043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):640-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12855817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 26;278(52):53035-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14565959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 23;279(4):2712-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14600154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 2004 Apr;121(4):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1997 Jul 1;100(1):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):766-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9309991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12):1366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 18;280(7):5571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Feb 1;176(3):1937-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16424225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Jun 15;193(12):1634-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Jun;2(6):e53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16789835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Dec;3(12):e525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2007 May;7(5):353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17457343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8692-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Jan 15;180(2):683-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008;4(8):e1000115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Nov;82(21):10349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2009;10:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Sep;83(17):8946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12713-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Feb;12(2):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Feb;7(2):e1001304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2013 Dec;132(6):1263-76; quiz 1277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23915713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2014 Jan;14(1):57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24239327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2014 Feb;306(3):L217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(2):e88716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24551142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2014 Mar;20:42-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24406736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014;5(2):e00047-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):4251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2014 May 1;192(9):4303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24688022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2014 May 15;189(10):1280-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24832747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014;5(3):e01174-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24846384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Aug;108:10-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24837607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2011 Jun 24;34(6):866-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21703541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 May;7(5):e1002070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2014 Aug 1;193(3):1324-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2011 Nov;11(11):762-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21984070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(23):12201-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Physiol Neurobiol. 2013 Feb 1;185(3):497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23183420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Diagn Invest. 2013 Sep;25(5):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23963154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Nov;86(21):11416-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(7):e69374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(5):e00598-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24003179</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001616 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001616 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26015500
   |texte=   Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26015500" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021