Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploration of RNA Sequence Space in the Absence of a Replicase.

Identifieur interne : 000909 ( PubMed/Curation ); précédent : 000908; suivant : 000910

Exploration of RNA Sequence Space in the Absence of a Replicase.

Auteurs : Madhan R. Tirumalai [États-Unis] ; Quyen Tran [États-Unis] ; Maxim Paci [États-Unis] ; Dimple Chavan [États-Unis] ; Anuradha Marathe [États-Unis] ; George E. Fox [États-Unis]

Source :

RBID : pubmed:29748740

Descripteurs français

English descriptors

Abstract

It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.

DOI: 10.1007/s00239-018-9846-8
PubMed: 29748740

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29748740

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploration of RNA Sequence Space in the Absence of a Replicase.</title>
<author>
<name sortKey="Tirumalai, Madhan R" sort="Tirumalai, Madhan R" uniqKey="Tirumalai M" first="Madhan R" last="Tirumalai">Madhan R. Tirumalai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tran, Quyen" sort="Tran, Quyen" uniqKey="Tran Q" first="Quyen" last="Tran">Quyen Tran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paci, Maxim" sort="Paci, Maxim" uniqKey="Paci M" first="Maxim" last="Paci">Maxim Paci</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chavan, Dimple" sort="Chavan, Dimple" uniqKey="Chavan D" first="Dimple" last="Chavan">Dimple Chavan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Marathe, Anuradha" sort="Marathe, Anuradha" uniqKey="Marathe A" first="Anuradha" last="Marathe">Anuradha Marathe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fox, George E" sort="Fox, George E" uniqKey="Fox G" first="George E" last="Fox">George E. Fox</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA. fox@uh.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29748740</idno>
<idno type="pmid">29748740</idno>
<idno type="doi">10.1007/s00239-018-9846-8</idno>
<idno type="wicri:Area/PubMed/Corpus">000909</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000909</idno>
<idno type="wicri:Area/PubMed/Curation">000909</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000909</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploration of RNA Sequence Space in the Absence of a Replicase.</title>
<author>
<name sortKey="Tirumalai, Madhan R" sort="Tirumalai, Madhan R" uniqKey="Tirumalai M" first="Madhan R" last="Tirumalai">Madhan R. Tirumalai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tran, Quyen" sort="Tran, Quyen" uniqKey="Tran Q" first="Quyen" last="Tran">Quyen Tran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paci, Maxim" sort="Paci, Maxim" uniqKey="Paci M" first="Maxim" last="Paci">Maxim Paci</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chavan, Dimple" sort="Chavan, Dimple" uniqKey="Chavan D" first="Dimple" last="Chavan">Dimple Chavan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Marathe, Anuradha" sort="Marathe, Anuradha" uniqKey="Marathe A" first="Anuradha" last="Marathe">Anuradha Marathe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fox, George E" sort="Fox, George E" uniqKey="Fox G" first="George E" last="Fox">George E. Fox</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA. fox@uh.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular evolution</title>
<idno type="eISSN">1432-1432</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Composition (genetics)</term>
<term>Base Sequence</term>
<term>Nucleotides (genetics)</term>
<term>RNA (genetics)</term>
<term>RNA Replicase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN (génétique)</term>
<term>Composition en bases nucléiques (génétique)</term>
<term>Nucléotides (génétique)</term>
<term>RNA replicase (métabolisme)</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nucleotides</term>
<term>RNA</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Base Composition</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN</term>
<term>Composition en bases nucléiques</term>
<term>Nucléotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA Replicase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>RNA replicase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29748740</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1432</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular evolution</Title>
<ISOAbbreviation>J. Mol. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploration of RNA Sequence Space in the Absence of a Replicase.</ArticleTitle>
<Pagination>
<MedlinePgn>264-276</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00239-018-9846-8</ELocationID>
<Abstract>
<AbstractText>It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tirumalai</LastName>
<ForeName>Madhan R</ForeName>
<Initials>MR</Initials>
<Identifier Source="ORCID">0000-0002-5999-333X</Identifier>
<AffiliationInfo>
<Affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tran</LastName>
<ForeName>Quyen</ForeName>
<Initials>Q</Initials>
<Identifier Source="ORCID">0000-0003-2029-2584</Identifier>
<AffiliationInfo>
<Affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paci</LastName>
<ForeName>Maxim</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chavan</LastName>
<ForeName>Dimple</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marathe</LastName>
<ForeName>Anuradha</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>George E</ForeName>
<Initials>GE</Initials>
<Identifier Source="ORCID">0000-0001-7767-8387</Identifier>
<AffiliationInfo>
<Affiliation>Department Biology & Biochemistry, University of Houston, 3455 Cullen Blvd, Suite #342, Houston, TX, 77204-5001, USA. fox@uh.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>11175</GrantID>
<Agency>John Templeton Foundation (Via-Foundation for Applied Molecular Evolution)</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Mol Evol</MedlineTA>
<NlmUniqueID>0360051</NlmUniqueID>
<ISSNLinking>0022-2844</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001482" MajorTopicYN="N">Base Composition</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Benzonase</Keyword>
<Keyword MajorTopicYN="Y">Dynamic combinatorial chemistry</Keyword>
<Keyword MajorTopicYN="Y">Origin of life</Keyword>
<Keyword MajorTopicYN="Y">RNA World</Keyword>
<Keyword MajorTopicYN="Y">Sequence space</Keyword>
<Keyword MajorTopicYN="Y">T4 RNA ligase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29748740</ArticleId>
<ArticleId IdType="doi">10.1007/s00239-018-9846-8</ArticleId>
<ArticleId IdType="pii">10.1007/s00239-018-9846-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2011 Dec 23;50(52):12412-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22162284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 2017 Sep;47(3):281-296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28432500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2015 Apr;21(4):474-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25780099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 May 19;292(20):8122-8135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28381442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 6;281(40):29769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 May 08;34(8):e63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Apr 28;132(16):5880-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20359213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Sep;21(9):1543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Sep;2(9):a003483</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Dec 15;135(1-2):33-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8276275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1993 Jan;7(1):238-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7678564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 1998;102-103(1-6):91-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9720274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Mar;267(6):1707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Jan;16(1):7-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25385129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7667262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2009;74:11-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19850851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2007 Apr;4(4):694-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26201989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27528667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Apr 25;7:11328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27108699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Nov;76(21):7310-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2016 Oct 14;17(11):679-692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27739534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Feb 22;134(7):3577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22280414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 Oct 10;244(19):5213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4899013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2012 Dec 18;45(12):2025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2013 Apr 18;20(4):466-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Jun 22;133(24):9457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21553892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 1;491(7422):72-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1986 Oct;158(1):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3799962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Feb 2;337(6206):478-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2915692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(17):4702-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 May 01;4(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Oct;39(18):8135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 7;288(3):377-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2017 Apr;9(4):318-324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 May;15(5):743-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19318464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 1993 Dec;23(5-6):329-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7509476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2014 Dec;11(12):1998-2010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25491343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1992 Jul;35(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11536502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 20;515(7527):440-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25363769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Aug 8;129(31):9556-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2017 Jul;23(7):1088-1096</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28389432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2011 Sep;12(5):489-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Chem Scand. 1996 Mar;50(3):243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000909 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000909 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29748740
   |texte=   Exploration of RNA Sequence Space in the Absence of a Replicase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29748740" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021