Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication.

Identifieur interne : 000517 ( PubMed/Curation ); précédent : 000516; suivant : 000518

A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication.

Auteurs : Stuart Weston [États-Unis] ; Krystal L. Matthews [États-Unis] ; Rachel Lent [États-Unis] ; Alexandra Vlk [États-Unis] ; Rob Haupt [États-Unis] ; Tami Kingsbury [États-Unis] ; Matthew B. Frieman [États-Unis]

Source :

RBID : pubmed:31142674

Abstract

Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast Saccharomyces cerevisiae as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.

DOI: 10.1128/JVI.00197-19
PubMed: 31142674

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31142674

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication.</title>
<author>
<name sortKey="Weston, Stuart" sort="Weston, Stuart" uniqKey="Weston S" first="Stuart" last="Weston">Stuart Weston</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Matthews, Krystal L" sort="Matthews, Krystal L" uniqKey="Matthews K" first="Krystal L" last="Matthews">Krystal L. Matthews</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lent, Rachel" sort="Lent, Rachel" uniqKey="Lent R" first="Rachel" last="Lent">Rachel Lent</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vlk, Alexandra" sort="Vlk, Alexandra" uniqKey="Vlk A" first="Alexandra" last="Vlk">Alexandra Vlk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Haupt, Rob" sort="Haupt, Rob" uniqKey="Haupt R" first="Rob" last="Haupt">Rob Haupt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kingsbury, Tami" sort="Kingsbury, Tami" uniqKey="Kingsbury T" first="Tami" last="Kingsbury">Tami Kingsbury</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew B" sort="Frieman, Matthew B" uniqKey="Frieman M" first="Matthew B" last="Frieman">Matthew B. Frieman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA MFrieman@som.umaryland.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31142674</idno>
<idno type="pmid">31142674</idno>
<idno type="doi">10.1128/JVI.00197-19</idno>
<idno type="wicri:Area/PubMed/Corpus">000517</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000517</idno>
<idno type="wicri:Area/PubMed/Curation">000517</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000517</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication.</title>
<author>
<name sortKey="Weston, Stuart" sort="Weston, Stuart" uniqKey="Weston S" first="Stuart" last="Weston">Stuart Weston</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Matthews, Krystal L" sort="Matthews, Krystal L" uniqKey="Matthews K" first="Krystal L" last="Matthews">Krystal L. Matthews</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lent, Rachel" sort="Lent, Rachel" uniqKey="Lent R" first="Rachel" last="Lent">Rachel Lent</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vlk, Alexandra" sort="Vlk, Alexandra" uniqKey="Vlk A" first="Alexandra" last="Vlk">Alexandra Vlk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Haupt, Rob" sort="Haupt, Rob" uniqKey="Haupt R" first="Rob" last="Haupt">Rob Haupt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kingsbury, Tami" sort="Kingsbury, Tami" uniqKey="Kingsbury T" first="Tami" last="Kingsbury">Tami Kingsbury</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew B" sort="Frieman, Matthew B" uniqKey="Frieman M" first="Matthew B" last="Frieman">Matthew B. Frieman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA MFrieman@som.umaryland.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast
<i>Saccharomyces cerevisiae</i>
as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells.
<b>IMPORTANCE</b>
Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of
<i>Saccharomyces cerevisiae</i>
to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">31142674</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00197-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00197-19</ELocationID>
<Abstract>
<AbstractText>Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast
<i>Saccharomyces cerevisiae</i>
as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells.
<b>IMPORTANCE</b>
Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of
<i>Saccharomyces cerevisiae</i>
to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weston</LastName>
<ForeName>Stuart</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matthews</LastName>
<ForeName>Krystal L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lent</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vlk</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Haupt</LastName>
<ForeName>Rob</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kingsbury</LastName>
<ForeName>Tami</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA MFrieman@som.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">ORF4a</Keyword>
<Keyword MajorTopicYN="N">SIRT1</Keyword>
<Keyword MajorTopicYN="N">host-virus interaction</Keyword>
<Keyword MajorTopicYN="N">suppressor screen</Keyword>
<Keyword MajorTopicYN="N">virus-host interaction</Keyword>
<Keyword MajorTopicYN="N">yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31142674</ArticleId>
<ArticleId IdType="pii">JVI.00197-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00197-19</ArticleId>
<ArticleId IdType="pmc">PMC6675885</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Feb 17;403(6771):795-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10693811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15764-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2011-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jun 16;23(12):2369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15152190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Apr;60(1):51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 May 15;404(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Jan;4(1):e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Feb;11(2):230-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19016775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Dec 22;4(12):e8414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pathol. 2010;5:253-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20078221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22164298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Nov 20;3(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Nov;8(11):2180-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24136345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2014;54:363-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24160699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2013 Dec;4(12):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2014 Jan;141(1):219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24346702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Dec 19;155(7):1479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Apr;95(Pt 4):874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4866-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Feb 25;5(2):e00884-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24570370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Jun;22(6):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24647076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 21;9(4):e95799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24752411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Jun;20(6):1049-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Jun;197(2):451-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2014 Jun;26:24-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25005742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Dec 16;5(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2012 Nov;1(11):e35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26038405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Aug;89(16):8623-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26063426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Microbiol. 2015 May 01;37:15E.2.1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26344219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2016;1358:43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26463376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2016 Mar;161(3):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26660162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2016 Jun 2;85:405-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27088879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 21;6:24744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27098390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 26;12(10):e1005982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Dec 15;129(24):4534-4547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27875274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2017 Feb 13;17(1):144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 20;7:42998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28216632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gene Regul Mech. 2017 Apr;1860(4):491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28242208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 12;7(1):11362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28900197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Feb;515:165-175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29294448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Mar;516:71-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29331676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Jul 24;24(4):851-860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30044982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Sep 26;92(20):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30068649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3022281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2019 Mar 26;10(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30914508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 May;116(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3297920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Aug 28;371(1):4-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7664881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Dec 25;22(25):5767-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7838736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Oct 25;274(5287):546, 563-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8849441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000517 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000517 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31142674
   |texte=   A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31142674" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021