Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.

Identifieur interne : 002A88 ( PubMed/Corpus ); précédent : 002A87; suivant : 002A89

Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.

Auteurs : M E O'Donnell ; A. Kornberg

Source :

RBID : pubmed:2413035

English descriptors

Abstract

Movements of DNA polymerase III holoenzyme (holoenzyme) in replicating a template multiprimed with synthetic pentadecadeoxynucleotides (15-mers) annealed at known positions on a single-stranded circular or linear DNA have been analyzed. After extension of one 15-mer on a multiprimed template, holoenzyme moves downstream in the direction of chain elongation to the next primer. Holoenzyme readily traverses a duplex, even 400 base pairs long, to exploit its 3'-hydroxyl end as the next available primer. This downstream polarity likely results from an inability to diffuse upstream along single-stranded DNA. These holoenzyme movements, unlike formation of the initial complex with a primer, do not require ATP. Time elapsed between completion of a chain and initiation on the next downstream primer is rapid (1 s or less); dissociation of holoenzyme to form a complex with another primed template is slow (1-2 min). Thus, holoenzyme diffuses rapidly only on duplex DNA, probably in both directions, and forms an initiation complex with the first primer encountered. Based on these findings, schemes can be considered for holoenzyme action at the replication fork of a duplex chromosome.

PubMed: 2413035

Links to Exploration step

pubmed:2413035

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.</title>
<author>
<name sortKey="O Donnell, M E" sort="O Donnell, M E" uniqKey="O Donnell M" first="M E" last="O'Donnell">M E O'Donnell</name>
</author>
<author>
<name sortKey="Kornberg, A" sort="Kornberg, A" uniqKey="Kornberg A" first="A" last="Kornberg">A. Kornberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1985">1985</date>
<idno type="RBID">pubmed:2413035</idno>
<idno type="pmid">2413035</idno>
<idno type="wicri:Area/PubMed/Corpus">002A88</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.</title>
<author>
<name sortKey="O Donnell, M E" sort="O Donnell, M E" uniqKey="O Donnell M" first="M E" last="O'Donnell">M E O'Donnell</name>
</author>
<author>
<name sortKey="Kornberg, A" sort="Kornberg, A" uniqKey="Kornberg A" first="A" last="Kornberg">A. Kornberg</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1985" type="published">1985</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (pharmacology)</term>
<term>Adenylyl Imidodiphosphate (analogs & derivatives)</term>
<term>Adenylyl Imidodiphosphate (pharmacology)</term>
<term>Bacteriophage phi X 174 (genetics)</term>
<term>Base Composition</term>
<term>DNA Polymerase III (metabolism)</term>
<term>DNA Replication</term>
<term>DNA Restriction Enzymes</term>
<term>DNA, Circular (metabolism)</term>
<term>DNA, Single-Stranded (metabolism)</term>
<term>DNA, Viral (metabolism)</term>
<term>DNA-Directed DNA Polymerase (metabolism)</term>
<term>Deoxyadenine Nucleotides (metabolism)</term>
<term>Deoxyribonucleotides (metabolism)</term>
<term>Escherichia coli (enzymology)</term>
<term>Kinetics</term>
<term>Nucleic Acid Hybridization</term>
<term>RNA (metabolism)</term>
<term>Templates, Genetic</term>
<term>Thymine Nucleotides (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Adenylyl Imidodiphosphate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Polymerase III</term>
<term>DNA, Circular</term>
<term>DNA, Single-Stranded</term>
<term>DNA, Viral</term>
<term>DNA-Directed DNA Polymerase</term>
<term>Deoxyadenine Nucleotides</term>
<term>Deoxyribonucleotides</term>
<term>RNA</term>
<term>Thymine Nucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Adenylyl Imidodiphosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteriophage phi X 174</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Composition</term>
<term>DNA Replication</term>
<term>DNA Restriction Enzymes</term>
<term>Kinetics</term>
<term>Nucleic Acid Hybridization</term>
<term>Templates, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Movements of DNA polymerase III holoenzyme (holoenzyme) in replicating a template multiprimed with synthetic pentadecadeoxynucleotides (15-mers) annealed at known positions on a single-stranded circular or linear DNA have been analyzed. After extension of one 15-mer on a multiprimed template, holoenzyme moves downstream in the direction of chain elongation to the next primer. Holoenzyme readily traverses a duplex, even 400 base pairs long, to exploit its 3'-hydroxyl end as the next available primer. This downstream polarity likely results from an inability to diffuse upstream along single-stranded DNA. These holoenzyme movements, unlike formation of the initial complex with a primer, do not require ATP. Time elapsed between completion of a chain and initiation on the next downstream primer is rapid (1 s or less); dissociation of holoenzyme to form a complex with another primed template is slow (1-2 min). Thus, holoenzyme diffuses rapidly only on duplex DNA, probably in both directions, and forms an initiation complex with the first primer encountered. Based on these findings, schemes can be considered for holoenzyme action at the replication fork of a duplex chromosome.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">2413035</PMID>
<DateCompleted>
<Year>1985</Year>
<Month>11</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>260</Volume>
<Issue>23</Issue>
<PubDate>
<Year>1985</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.</ArticleTitle>
<Pagination>
<MedlinePgn>12875-83</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Movements of DNA polymerase III holoenzyme (holoenzyme) in replicating a template multiprimed with synthetic pentadecadeoxynucleotides (15-mers) annealed at known positions on a single-stranded circular or linear DNA have been analyzed. After extension of one 15-mer on a multiprimed template, holoenzyme moves downstream in the direction of chain elongation to the next primer. Holoenzyme readily traverses a duplex, even 400 base pairs long, to exploit its 3'-hydroxyl end as the next available primer. This downstream polarity likely results from an inability to diffuse upstream along single-stranded DNA. These holoenzyme movements, unlike formation of the initial complex with a primer, do not require ATP. Time elapsed between completion of a chain and initiation on the next downstream primer is rapid (1 s or less); dissociation of holoenzyme to form a complex with another primed template is slow (1-2 min). Thus, holoenzyme diffuses rapidly only on duplex DNA, probably in both directions, and forms an initiation complex with the first primer encountered. Based on these findings, schemes can be considered for holoenzyme action at the replication fork of a duplex chromosome.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Donnell</LastName>
<ForeName>M E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kornberg</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004270">DNA, Circular</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004277">DNA, Single-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003838">Deoxyadenine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003854">Deoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013942">Thymine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>119447-19-7</RegistryNumber>
<NameOfSubstance UI="C046784">2'-deoxy-5'-adenylyl imidodiphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25612-73-1</RegistryNumber>
<NameOfSubstance UI="D000266">Adenylyl Imidodiphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D004258">DNA Polymerase III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.7</RegistryNumber>
<NameOfSubstance UI="D004259">DNA-Directed DNA Polymerase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.21.-</RegistryNumber>
<NameOfSubstance UI="D004262">DNA Restriction Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K8KCC8SH6N</RegistryNumber>
<NameOfSubstance UI="C026600">2'-deoxyadenosine triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QOP4K539MU</RegistryNumber>
<NameOfSubstance UI="C024157">thymidine 5'-triphosphate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000266" MajorTopicYN="N">Adenylyl Imidodiphosphate</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010584" MajorTopicYN="N">Bacteriophage phi X 174</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001482" MajorTopicYN="N">Base Composition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004258" MajorTopicYN="N">DNA Polymerase III</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004262" MajorTopicYN="N">DNA Restriction Enzymes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004270" MajorTopicYN="N">DNA, Circular</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004277" MajorTopicYN="N">DNA, Single-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004259" MajorTopicYN="N">DNA-Directed DNA Polymerase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003838" MajorTopicYN="N">Deoxyadenine Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003854" MajorTopicYN="N">Deoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013698" MajorTopicYN="N">Templates, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013942" MajorTopicYN="N">Thymine Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1985</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1985</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1985</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">2413035</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:2413035
   |texte=   Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:2413035" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021