Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Curved DNA: design, synthesis, and circularization.

Identifieur interne : 002A86 ( PubMed/Corpus ); précédent : 002A85; suivant : 002A87

Curved DNA: design, synthesis, and circularization.

Auteurs : L. Ulanovsky ; M. Bodner ; E N Trifonov ; M. Choder

Source :

RBID : pubmed:3456570

English descriptors

Abstract

Curved DNA molecules and unusually small circles have been obtained by ligation of synthetic 21-base precursors: (sequence in text). The ligation resulted in the formation of double-stranded oligo-(precursor)s possessing a strong 10.5-base-pair (bp) periodicity of the runs of adenines. Two-dimensional polyacrylamide gel electrophoresis of the ligation products showed two distinct families of spots: (i) noncircular oligo(precursor)s of 21 to 231 bp (1- to 11-mers) and (ii) four circles from 105 to 168 bp (eluted and analyzed by denaturing gel electrophoresis). The noncircular oligomers exhibited anomalously slow migration, as if they were as much as three times longer than they actually are. The amount of circular products peaked sharply at approximately equal to 126 bp, near which size the circles have been estimated to be nonconstrained both torsionally and in terms of bending. The nonconstrained circularization provides a technique for the direct measurement of the inherent curvature of DNA in solution. From the size of the circles, an estimate of 8.7 degrees is obtained for the absolute value of the AA X TT wedge angle (roll and tilt combined).

DOI: 10.1073/pnas.83.4.862
PubMed: 3456570

Links to Exploration step

pubmed:3456570

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Curved DNA: design, synthesis, and circularization.</title>
<author>
<name sortKey="Ulanovsky, L" sort="Ulanovsky, L" uniqKey="Ulanovsky L" first="L" last="Ulanovsky">L. Ulanovsky</name>
</author>
<author>
<name sortKey="Bodner, M" sort="Bodner, M" uniqKey="Bodner M" first="M" last="Bodner">M. Bodner</name>
</author>
<author>
<name sortKey="Trifonov, E N" sort="Trifonov, E N" uniqKey="Trifonov E" first="E N" last="Trifonov">E N Trifonov</name>
</author>
<author>
<name sortKey="Choder, M" sort="Choder, M" uniqKey="Choder M" first="M" last="Choder">M. Choder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1986">1986</date>
<idno type="RBID">pubmed:3456570</idno>
<idno type="pmid">3456570</idno>
<idno type="doi">10.1073/pnas.83.4.862</idno>
<idno type="wicri:Area/PubMed/Corpus">002A86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Curved DNA: design, synthesis, and circularization.</title>
<author>
<name sortKey="Ulanovsky, L" sort="Ulanovsky, L" uniqKey="Ulanovsky L" first="L" last="Ulanovsky">L. Ulanovsky</name>
</author>
<author>
<name sortKey="Bodner, M" sort="Bodner, M" uniqKey="Bodner M" first="M" last="Bodner">M. Bodner</name>
</author>
<author>
<name sortKey="Trifonov, E N" sort="Trifonov, E N" uniqKey="Trifonov E" first="E N" last="Trifonov">E N Trifonov</name>
</author>
<author>
<name sortKey="Choder, M" sort="Choder, M" uniqKey="Choder M" first="M" last="Choder">M. Choder</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1986" type="published">1986</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA (chemical synthesis)</term>
<term>DNA, Circular (chemical synthesis)</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Molecular Weight</term>
<term>Nucleic Acid Conformation</term>
<term>Oligodeoxyribonucleotides (chemical synthesis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>DNA</term>
<term>DNA, Circular</term>
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Molecular Weight</term>
<term>Nucleic Acid Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Curved DNA molecules and unusually small circles have been obtained by ligation of synthetic 21-base precursors: (sequence in text). The ligation resulted in the formation of double-stranded oligo-(precursor)s possessing a strong 10.5-base-pair (bp) periodicity of the runs of adenines. Two-dimensional polyacrylamide gel electrophoresis of the ligation products showed two distinct families of spots: (i) noncircular oligo(precursor)s of 21 to 231 bp (1- to 11-mers) and (ii) four circles from 105 to 168 bp (eluted and analyzed by denaturing gel electrophoresis). The noncircular oligomers exhibited anomalously slow migration, as if they were as much as three times longer than they actually are. The amount of circular products peaked sharply at approximately equal to 126 bp, near which size the circles have been estimated to be nonconstrained both torsionally and in terms of bending. The nonconstrained circularization provides a technique for the direct measurement of the inherent curvature of DNA in solution. From the size of the circles, an estimate of 8.7 degrees is obtained for the absolute value of the AA X TT wedge angle (roll and tilt combined).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3456570</PMID>
<DateCompleted>
<Year>1986</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>83</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1986</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Curved DNA: design, synthesis, and circularization.</ArticleTitle>
<Pagination>
<MedlinePgn>862-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Curved DNA molecules and unusually small circles have been obtained by ligation of synthetic 21-base precursors: (sequence in text). The ligation resulted in the formation of double-stranded oligo-(precursor)s possessing a strong 10.5-base-pair (bp) periodicity of the runs of adenines. Two-dimensional polyacrylamide gel electrophoresis of the ligation products showed two distinct families of spots: (i) noncircular oligo(precursor)s of 21 to 231 bp (1- to 11-mers) and (ii) four circles from 105 to 168 bp (eluted and analyzed by denaturing gel electrophoresis). The noncircular oligomers exhibited anomalously slow migration, as if they were as much as three times longer than they actually are. The amount of circular products peaked sharply at approximately equal to 126 bp, near which size the circles have been estimated to be nonconstrained both torsionally and in terms of bending. The nonconstrained circularization provides a technique for the direct measurement of the inherent curvature of DNA in solution. From the size of the circles, an estimate of 8.7 degrees is obtained for the absolute value of the AA X TT wedge angle (roll and tilt combined).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ulanovsky</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bodner</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trifonov</LastName>
<ForeName>E N</ForeName>
<Initials>EN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Choder</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004270">DNA, Circular</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004270" MajorTopicYN="N">DNA, Circular</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="Y">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="N">Oligodeoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1986</Year>
<Month>2</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1986</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1986</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3456570</ArticleId>
<ArticleId IdType="pmc">PMC322970</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.83.4.862</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>CRC Crit Rev Biochem. 1985;19(2):89-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3905255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1985 Feb;2(5):1005-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3916932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Aug;78(8):4833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6272277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1983 Jun 11;11(11):3833-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6856466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6305554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 Apr 15;156(3):523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1983 Dec 20;22(26):6186-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6318810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Sep 11;8(17):4041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7443521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jun;82(11):3548-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2987932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Jun 25;254(12):5417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">447660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1981 Jul;20(7):1503-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7023566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1981 Aug;118(2):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7285918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Dec;79(24):7664-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Jul 23;292(5821):375-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6265793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1984 Jan 16;138(2):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6697985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Jan;76(1):200-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">284332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1983 Oct;1(2):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6400882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Aug;81(15):4632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6087336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Apr 5-11;308(5959):509-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6323997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Dec;39(3 Pt 2):643-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1982 May 6;297(5861):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7070532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Jul;77(7):3816-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6933438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Aug;38(1):317-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6088074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1985 Feb;2(4):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3917116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Jul 23;292(5821):378-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6265794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 Feb 11;10(3):1097-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7063417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 Aug 25-31;304(5928):752-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6888544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:3456570
   |texte=   Curved DNA: design, synthesis, and circularization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:3456570" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021