Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Xrep, a plasmid-stimulating X chromosomal sequence bearing similarities to the BK virus replication origin and viral enhancers.

Identifieur interne : 002A79 ( PubMed/Corpus ); précédent : 002A78; suivant : 002A80

Xrep, a plasmid-stimulating X chromosomal sequence bearing similarities to the BK virus replication origin and viral enhancers.

Auteurs : D E Riley ; R. Reeves ; S M Gartler

Source :

RBID : pubmed:3025813

English descriptors

Abstract

The human X chromosome-linked fragment, "Xrep," was sequenced because it exerts a positive effect on plasmid growth in both E. coli and Saccharomyces cerevisiae. The sequence revealed three features similar to the human BK virus replication origin: Xrep has a true palindrome, CCTCC(T)3CCTCC, which is similar to "true" palindrome-like sequences found at the replication origins of polyoma [CCTC(T/C)10CTCC], BK [CCTC(A/G)8CCTCC] and SV40 [CCTCC(A)6GCCTCC] viruses. Twenty nucleotides away from the true palindrome, Xrep has the sequence GAATCCTATTCACTTTT while BK virus, the human analogue of SV40, has GAAATCCCTATTCTTTT in exactly the same position relative to the true palindrome. These two 17-mers differ only in the positions of two nucleotides comparing Xrep and BK virus. Also similar to the replication origins of DNA viruses, Xrep appears to have a cluster of enhancers adjacent to the origin-like sequences. Potent enhancer-like activity was detected in pSV1 X CAT/Xrep constructs. Xrep may originate from an endogenous virus, or from an X chromosomal replication origin.

DOI: 10.1093/nar/14.23.9407
PubMed: 3025813

Links to Exploration step

pubmed:3025813

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Xrep, a plasmid-stimulating X chromosomal sequence bearing similarities to the BK virus replication origin and viral enhancers.</title>
<author>
<name sortKey="Riley, D E" sort="Riley, D E" uniqKey="Riley D" first="D E" last="Riley">D E Riley</name>
</author>
<author>
<name sortKey="Reeves, R" sort="Reeves, R" uniqKey="Reeves R" first="R" last="Reeves">R. Reeves</name>
</author>
<author>
<name sortKey="Gartler, S M" sort="Gartler, S M" uniqKey="Gartler S" first="S M" last="Gartler">S M Gartler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1986">1986</date>
<idno type="RBID">pubmed:3025813</idno>
<idno type="pmid">3025813</idno>
<idno type="doi">10.1093/nar/14.23.9407</idno>
<idno type="wicri:Area/PubMed/Corpus">002A79</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Xrep, a plasmid-stimulating X chromosomal sequence bearing similarities to the BK virus replication origin and viral enhancers.</title>
<author>
<name sortKey="Riley, D E" sort="Riley, D E" uniqKey="Riley D" first="D E" last="Riley">D E Riley</name>
</author>
<author>
<name sortKey="Reeves, R" sort="Reeves, R" uniqKey="Reeves R" first="R" last="Reeves">R. Reeves</name>
</author>
<author>
<name sortKey="Gartler, S M" sort="Gartler, S M" uniqKey="Gartler S" first="S M" last="Gartler">S M Gartler</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="ISSN">0305-1048</idno>
<imprint>
<date when="1986" type="published">1986</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetyltransferases (genetics)</term>
<term>BK Virus (genetics)</term>
<term>Base Sequence</term>
<term>Chloramphenicol O-Acetyltransferase</term>
<term>Chromosome Deletion</term>
<term>Chromosome Mapping</term>
<term>Cloning, Molecular</term>
<term>DNA, Viral (analysis)</term>
<term>Enhancer Elements, Genetic</term>
<term>Escherichia coli (genetics)</term>
<term>Genes, Regulator</term>
<term>Humans</term>
<term>Plasmids</term>
<term>Polyomavirus (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Virus Replication</term>
<term>X Chromosome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>DNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acetyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>BK Virus</term>
<term>Escherichia coli</term>
<term>Polyomavirus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Chloramphenicol O-Acetyltransferase</term>
<term>Chromosome Deletion</term>
<term>Chromosome Mapping</term>
<term>Cloning, Molecular</term>
<term>Enhancer Elements, Genetic</term>
<term>Genes, Regulator</term>
<term>Humans</term>
<term>Plasmids</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Virus Replication</term>
<term>X Chromosome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The human X chromosome-linked fragment, "Xrep," was sequenced because it exerts a positive effect on plasmid growth in both E. coli and Saccharomyces cerevisiae. The sequence revealed three features similar to the human BK virus replication origin: Xrep has a true palindrome, CCTCC(T)3CCTCC, which is similar to "true" palindrome-like sequences found at the replication origins of polyoma [CCTC(T/C)10CTCC], BK [CCTC(A/G)8CCTCC] and SV40 [CCTCC(A)6GCCTCC] viruses. Twenty nucleotides away from the true palindrome, Xrep has the sequence GAATCCTATTCACTTTT while BK virus, the human analogue of SV40, has GAAATCCCTATTCTTTT in exactly the same position relative to the true palindrome. These two 17-mers differ only in the positions of two nucleotides comparing Xrep and BK virus. Also similar to the replication origins of DNA viruses, Xrep appears to have a cluster of enhancers adjacent to the origin-like sequences. Potent enhancer-like activity was detected in pSV1 X CAT/Xrep constructs. Xrep may originate from an endogenous virus, or from an X chromosomal replication origin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3025813</PMID>
<DateCompleted>
<Year>1987</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0305-1048</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>14</Volume>
<Issue>23</Issue>
<PubDate>
<Year>1986</Year>
<Month>Dec</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Xrep, a plasmid-stimulating X chromosomal sequence bearing similarities to the BK virus replication origin and viral enhancers.</ArticleTitle>
<Pagination>
<MedlinePgn>9407-23</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The human X chromosome-linked fragment, "Xrep," was sequenced because it exerts a positive effect on plasmid growth in both E. coli and Saccharomyces cerevisiae. The sequence revealed three features similar to the human BK virus replication origin: Xrep has a true palindrome, CCTCC(T)3CCTCC, which is similar to "true" palindrome-like sequences found at the replication origins of polyoma [CCTC(T/C)10CTCC], BK [CCTC(A/G)8CCTCC] and SV40 [CCTCC(A)6GCCTCC] viruses. Twenty nucleotides away from the true palindrome, Xrep has the sequence GAATCCTATTCACTTTT while BK virus, the human analogue of SV40, has GAAATCCCTATTCTTTT in exactly the same position relative to the true palindrome. These two 17-mers differ only in the positions of two nucleotides comparing Xrep and BK virus. Also similar to the replication origins of DNA viruses, Xrep appears to have a cluster of enhancers adjacent to the origin-like sequences. Potent enhancer-like activity was detected in pSV1 X CAT/Xrep constructs. Xrep may originate from an endogenous virus, or from an X chromosomal replication origin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riley</LastName>
<ForeName>D E</ForeName>
<Initials>DE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reeves</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gartler</LastName>
<ForeName>S M</ForeName>
<Initials>SM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>X04985</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1RO1 HD16659</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.28</RegistryNumber>
<NameOfSubstance UI="D015500">Chloramphenicol O-Acetyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001739" MajorTopicYN="N">BK Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015500" MajorTopicYN="N">Chloramphenicol O-Acetyltransferase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002872" MajorTopicYN="N">Chromosome Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004742" MajorTopicYN="Y">Enhancer Elements, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005809" MajorTopicYN="Y">Genes, Regulator</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="Y">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011120" MajorTopicYN="N">Polyomavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014960" MajorTopicYN="Y">X Chromosome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1986</Year>
<Month>12</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1986</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1986</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3025813</ArticleId>
<ArticleId IdType="pmc">PMC311967</ArticleId>
<ArticleId IdType="doi">10.1093/nar/14.23.9407</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1982 Apr 15;156(3):531-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Jan;79(2):381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6281769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Nov;79(21):6453-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6292901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1982 Sep;2(9):1044-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6960240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Feb 11;219(4585):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6297005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1983 Apr;46(1):143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6298451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 Dec 20;10(24):8323-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7162993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6575390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 5;221(4610):551-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6306768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1983 Jul;33(3):695-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6871991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Nov 18;222(4625):749-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6314501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Sep;133(2):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6356982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Feb 24;12(4):1829-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6322123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Aug;38(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6380762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Dec;39(3 Pt 2):653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1985;33(1):103-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Apr;5(4):649-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Jul 2;24(14):3736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2994716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Nov;4(11):2933-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2998767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1986 Mar 14;44(5):719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3004744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1986 May;6(5):1663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Mar 25;252(6):1873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">321447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">347451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1978 Oct;15(2):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">719745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1979 Jun;17(2):357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">222480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1979 Nov 1;282(5734):39-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">388229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1979 Oct 26;206(4417):456-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">228391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1980;65(1):560-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6154869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Aug 25;255(16):7665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6105155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1980 Jun 15;140(1):129-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6251230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Feb;78(2):943-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6262784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Jan;78(1):95-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6264457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1981 Jul 10;9(13):2989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6269067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1982 Aug;2(8):949-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6290874</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:3025813
   |texte=   Xrep, a plasmid-stimulating X chromosomal sequence bearing similarities to the BK virus replication origin and viral enhancers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:3025813" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021