Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.

Identifieur interne : 002939 ( PubMed/Corpus ); précédent : 002938; suivant : 002940

Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.

Auteurs : P. Genschik ; Y. Parmentier ; A. Durr ; J. Marbach ; M C Criqui ; E. Jamet ; J. Fleck

Source :

RBID : pubmed:1281439

English descriptors

Abstract

Four ubiquitin mRNA size classes were found to be differentially regulated in mesophyll protoplast-derived cultures of Nicotiana sylvestris. Three mRNA families of 1.9, 1.6 and 1.35 kb were expressed as soon as protoplasts were isolated. The 1.9 and 1.6 kb size classes were transiently expressed during the first hours of culture, whereas the level of expression of the 1.35 kb size class was maintained as long as cells kept dividing. A 0.7 kb mRNA size class started to be expressed just before the first divisions were observed. cDNAs corresponding to each of these families were isolated from a 6-h-old protoplast cDNA library and characterized. The 1.9, 1.6 and 1.35 kb mRNAs thus encode 7- or more, 6- and 5-mers, respectively, of ubiquitin whereas the 0.7 kb mRNAs encode a monomer of ubiquitin fused to a carboxyl extension protein of 52 amino acids. The expression of ubiquitin genes was studied, using probes specific for each of these transcript families, during protoplast culture and, for comparison, after various stresses including heat shock, HgCl2 treatment, a viral infection giving rise to a hypersensitive reaction, and an Agrobacterium tumefaciens infection which resulted in tumour formation. The 1.9 and 1.6 kb mRNA size classes were found to be stress-regulated, the 0.7 kb mRNA size class developmentally regulated and the 1.35 kb size class both stress- and developmentally regulated.

DOI: 10.1007/bf00027161
PubMed: 1281439

Links to Exploration step

pubmed:1281439

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.</title>
<author>
<name sortKey="Genschik, P" sort="Genschik, P" uniqKey="Genschik P" first="P" last="Genschik">P. Genschik</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Moléculaire des Plantes du C.N.R.S., Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parmentier, Y" sort="Parmentier, Y" uniqKey="Parmentier Y" first="Y" last="Parmentier">Y. Parmentier</name>
</author>
<author>
<name sortKey="Durr, A" sort="Durr, A" uniqKey="Durr A" first="A" last="Durr">A. Durr</name>
</author>
<author>
<name sortKey="Marbach, J" sort="Marbach, J" uniqKey="Marbach J" first="J" last="Marbach">J. Marbach</name>
</author>
<author>
<name sortKey="Criqui, M C" sort="Criqui, M C" uniqKey="Criqui M" first="M C" last="Criqui">M C Criqui</name>
</author>
<author>
<name sortKey="Jamet, E" sort="Jamet, E" uniqKey="Jamet E" first="E" last="Jamet">E. Jamet</name>
</author>
<author>
<name sortKey="Fleck, J" sort="Fleck, J" uniqKey="Fleck J" first="J" last="Fleck">J. Fleck</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1992">1992</date>
<idno type="RBID">pubmed:1281439</idno>
<idno type="pmid">1281439</idno>
<idno type="doi">10.1007/bf00027161</idno>
<idno type="wicri:Area/PubMed/Corpus">002939</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002939</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.</title>
<author>
<name sortKey="Genschik, P" sort="Genschik, P" uniqKey="Genschik P" first="P" last="Genschik">P. Genschik</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Moléculaire des Plantes du C.N.R.S., Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parmentier, Y" sort="Parmentier, Y" uniqKey="Parmentier Y" first="Y" last="Parmentier">Y. Parmentier</name>
</author>
<author>
<name sortKey="Durr, A" sort="Durr, A" uniqKey="Durr A" first="A" last="Durr">A. Durr</name>
</author>
<author>
<name sortKey="Marbach, J" sort="Marbach, J" uniqKey="Marbach J" first="J" last="Marbach">J. Marbach</name>
</author>
<author>
<name sortKey="Criqui, M C" sort="Criqui, M C" uniqKey="Criqui M" first="M C" last="Criqui">M C Criqui</name>
</author>
<author>
<name sortKey="Jamet, E" sort="Jamet, E" uniqKey="Jamet E" first="E" last="Jamet">E. Jamet</name>
</author>
<author>
<name sortKey="Fleck, J" sort="Fleck, J" uniqKey="Fleck J" first="J" last="Fleck">J. Fleck</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="1992" type="published">1992</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Cells, Cultured</term>
<term>DNA (genetics)</term>
<term>DNA (isolation & purification)</term>
<term>DNA Probes</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Molecular Weight</term>
<term>Multigene Family</term>
<term>Plant Physiological Phenomena</term>
<term>Plants (genetics)</term>
<term>Plants, Toxic</term>
<term>Protoplasts (physiology)</term>
<term>RNA (genetics)</term>
<term>RNA (isolation & purification)</term>
<term>RNA, Messenger (biosynthesis)</term>
<term>RNA, Messenger (isolation & purification)</term>
<term>Restriction Mapping</term>
<term>Sequence Homology, Amino Acid</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (physiology)</term>
<term>Ubiquitins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA</term>
<term>RNA</term>
<term>Ubiquitins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA</term>
<term>RNA</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protoplasts</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Cells, Cultured</term>
<term>DNA Probes</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Molecular Weight</term>
<term>Multigene Family</term>
<term>Plant Physiological Phenomena</term>
<term>Plants, Toxic</term>
<term>Restriction Mapping</term>
<term>Sequence Homology, Amino Acid</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Four ubiquitin mRNA size classes were found to be differentially regulated in mesophyll protoplast-derived cultures of Nicotiana sylvestris. Three mRNA families of 1.9, 1.6 and 1.35 kb were expressed as soon as protoplasts were isolated. The 1.9 and 1.6 kb size classes were transiently expressed during the first hours of culture, whereas the level of expression of the 1.35 kb size class was maintained as long as cells kept dividing. A 0.7 kb mRNA size class started to be expressed just before the first divisions were observed. cDNAs corresponding to each of these families were isolated from a 6-h-old protoplast cDNA library and characterized. The 1.9, 1.6 and 1.35 kb mRNAs thus encode 7- or more, 6- and 5-mers, respectively, of ubiquitin whereas the 0.7 kb mRNAs encode a monomer of ubiquitin fused to a carboxyl extension protein of 52 amino acids. The expression of ubiquitin genes was studied, using probes specific for each of these transcript families, during protoplast culture and, for comparison, after various stresses including heat shock, HgCl2 treatment, a viral infection giving rise to a hypersensitive reaction, and an Agrobacterium tumefaciens infection which resulted in tumour formation. The 1.9 and 1.6 kb mRNA size classes were found to be stress-regulated, the 0.7 kb mRNA size class developmentally regulated and the 1.35 kb size class both stress- and developmentally regulated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1281439</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>20</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1992</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>897-910</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Four ubiquitin mRNA size classes were found to be differentially regulated in mesophyll protoplast-derived cultures of Nicotiana sylvestris. Three mRNA families of 1.9, 1.6 and 1.35 kb were expressed as soon as protoplasts were isolated. The 1.9 and 1.6 kb size classes were transiently expressed during the first hours of culture, whereas the level of expression of the 1.35 kb size class was maintained as long as cells kept dividing. A 0.7 kb mRNA size class started to be expressed just before the first divisions were observed. cDNAs corresponding to each of these families were isolated from a 6-h-old protoplast cDNA library and characterized. The 1.9, 1.6 and 1.35 kb mRNAs thus encode 7- or more, 6- and 5-mers, respectively, of ubiquitin whereas the 0.7 kb mRNAs encode a monomer of ubiquitin fused to a carboxyl extension protein of 52 amino acids. The expression of ubiquitin genes was studied, using probes specific for each of these transcript families, during protoplast culture and, for comparison, after various stresses including heat shock, HgCl2 treatment, a viral infection giving rise to a hypersensitive reaction, and an Agrobacterium tumefaciens infection which resulted in tumour formation. The 1.9 and 1.6 kb mRNA size classes were found to be stress-regulated, the 0.7 kb mRNA size class developmentally regulated and the 1.35 kb size class both stress- and developmentally regulated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Genschik</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie Moléculaire des Plantes du C.N.R.S., Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parmentier</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Durr</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marbach</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Criqui</LastName>
<ForeName>M C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jamet</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fleck</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>M74100</AccessionNumber>
<AccessionNumber>M74101</AccessionNumber>
<AccessionNumber>M74156</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015342">DNA Probes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014452">Ubiquitins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015342" MajorTopicYN="N">DNA Probes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010947" MajorTopicYN="Y">Plants, Toxic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011523" MajorTopicYN="N">Protoplasts</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015183" MajorTopicYN="N">Restriction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014452" MajorTopicYN="N">Ubiquitins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1992</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1992</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1992</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1281439</ArticleId>
<ArticleId IdType="doi">10.1007/bf00027161</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1987 May;6(5):1429-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3038523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 May 18;61(4):697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2111732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1966 Jun 13;23(5):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5963888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Mar 30;338(6214):394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2538753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Jun;12(6):619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Sep 25;15(18):7283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2821506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 Nov;8(11):4727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2463465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1970 Dec;92(4):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24500300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 May;5(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2987683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1988 Apr;7(4):1121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2841110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Sep;17(3):395-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1653059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Nov 15;202(1):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1657605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Dec 13-19;312(5995):663-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6095120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1989 Dec;14 (12 ):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2696178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Mar 11;17(5):2119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2538802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1986;2:367-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3548772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Feb;85(4):1136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Jul 11;18(13):4031-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2142766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Differ Dev. 1990 Jan;29(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jul 1;132(1):6-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6312838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1988 May;90 ( Pt 1):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2848853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 Apr 25;232(4749):485-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2421409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Oct 25;17(20):8377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2554258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Mar;4(3):755-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2988935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Jul;165(1):310-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2838968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jan 10;349(6305):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1979 Jan;145(3):279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24317735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Dev. 1992 Aug;38(2):121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1419848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;59(2-3):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2830168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1986 Jul 1;158(1):57-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2426105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1988 Aug;213(2-3):435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2460733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(1):89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Oct;20(2):337-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1391779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Mar 25;264(9):4998-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2538468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Mar 27;48(6):1035-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3030556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Jun;16(6):1009-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1650614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Mar 1;99(1):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1850710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Jul 11;18(13):4007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1975 Jan;26(1):33-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1123610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Jan 26;15(2):443-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3029682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;128(3):213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1987;3:1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2825735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jul 25;265(21):12486-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 Jul;177(1):352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2162109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Jun 13;28(12):5226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2548604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(2):359-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 1991 Jan;69(1):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1645982</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002939 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002939 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:1281439
   |texte=   Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:1281439" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021