Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.

Identifieur interne : 002464 ( PubMed/Corpus ); précédent : 002463; suivant : 002465

4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.

Auteurs : Tomoko Hamma ; Paul S. Miller

Source :

RBID : pubmed:12643742

English descriptors

Abstract

Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.

DOI: 10.1021/bc025638+
PubMed: 12643742

Links to Exploration step

pubmed:12643742

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.</title>
<author>
<name sortKey="Hamma, Tomoko" sort="Hamma, Tomoko" uniqKey="Hamma T" first="Tomoko" last="Hamma">Tomoko Hamma</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Paul S" sort="Miller, Paul S" uniqKey="Miller P" first="Paul S" last="Miller">Paul S. Miller</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2003 Mar-Apr</MedlineDate>
</PubDate>
</date>
<idno type="RBID">pubmed:12643742</idno>
<idno type="pmid">12643742</idno>
<idno type="doi">10.1021/bc025638+</idno>
<idno type="wicri:Area/PubMed/Corpus">002464</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002464</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.</title>
<author>
<name sortKey="Hamma, Tomoko" sort="Hamma, Tomoko" uniqKey="Hamma T" first="Tomoko" last="Hamma">Tomoko Hamma</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Paul S" sort="Miller, Paul S" uniqKey="Miller P" first="Paul S" last="Miller">Paul S. Miller</name>
</author>
</analytic>
<series>
<title level="j">Bioconjugate chemistry</title>
<idno type="ISSN">1043-1802</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Chromatography, DEAE-Cellulose</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Gene Products, tat (chemistry)</term>
<term>Indicators and Reagents</term>
<term>Leupeptins (chemistry)</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotides, Antisense (chemical synthesis)</term>
<term>Oligonucleotides, Antisense (chemistry)</term>
<term>Peptides (chemistry)</term>
<term>Protein Binding</term>
<term>Quinolines (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Oligonucleotides, Antisense</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gene Products, tat</term>
<term>Leupeptins</term>
<term>Oligonucleotides, Antisense</term>
<term>Peptides</term>
<term>Quinolines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Chromatography, DEAE-Cellulose</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Indicators and Reagents</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12643742</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>11</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1043-1802</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>14</Volume>
<Issue>2</Issue>
<PubDate>
<MedlineDate>2003 Mar-Apr</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Bioconjugate chemistry</Title>
<ISOAbbreviation>Bioconjug. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.</ArticleTitle>
<Pagination>
<MedlinePgn>320-30</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hamma</LastName>
<ForeName>Tomoko</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Paul S</ForeName>
<Initials>PS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM57140</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Bioconjug Chem</MedlineTA>
<NlmUniqueID>9010319</NlmUniqueID>
<ISSNLinking>1043-1802</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C478637">4-(2-aminooxyethoxy)-2-(ethylureido)quinoline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015696">Gene Products, tat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007976">Leupeptins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016376">Oligonucleotides, Antisense</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011804">Quinolines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J97339NR3V</RegistryNumber>
<NameOfSubstance UI="C032854">leupeptin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002848" MajorTopicYN="N">Chromatography, DEAE-Cellulose</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015696" MajorTopicYN="N">Gene Products, tat</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007202" MajorTopicYN="N">Indicators and Reagents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007976" MajorTopicYN="N">Leupeptins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016376" MajorTopicYN="N">Oligonucleotides, Antisense</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011804" MajorTopicYN="N">Quinolines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12643742</ArticleId>
<ArticleId IdType="doi">10.1021/bc025638+</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002464 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002464 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12643742
   |texte=   4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:12643742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021