Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).

Identifieur interne : 002463 ( PubMed/Corpus ); précédent : 002462; suivant : 002464

The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).

Auteurs : Cameron Mura ; Anna Kozhukhovsky ; Mari Gingery ; Martin Phillips ; David Eisenberg

Source :

RBID : pubmed:12649441

English descriptors

Abstract

Intron splicing is a prime example of the many types of RNA processing catalyzed by small nuclear ribonucleoprotein (snRNP) complexes. Sm proteins form the cores of most snRNPs, and thus to learn principles of snRNP assembly we characterized the oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs) from Pyrobaculum aerophilum (Pae) and Methanobacterium thermautotrophicum (Mth). Ultracentrifugation shows that Mth SmAP1 is exclusively heptameric in solution, whereas Pae SmAP1 forms either disulfide-bonded 14-mers or sub-heptameric states (depending on the redox potential). By electron microscopy, we show that Pae and Mth SmAP1 polymerize into bundles of well ordered fibers that probably form by head-to-tail stacking of heptamers. The crystallographic results reported here corroborate these findings by showing heptamers and 14-mers of both Mth and Pae SmAP1 in four new crystal forms. The 1.9 A-resolution structure of Mth SmAP1 bound to uridine-5'-monophosphate (UMP) reveals conserved ligand-binding sites. The likely RNA binding site in Mth agrees with that determined for Archaeoglobus fulgidus (Afu) SmAP1. Finally, we found that both Pae and Mth SmAP1 gel-shift negatively supercoiled DNA. These results distinguish SmAPs from eukaryotic Sm proteins and suggest that SmAPs have a generic single-stranded nucleic acid-binding activity.

DOI: 10.1110/ps.0224703
PubMed: 12649441

Links to Exploration step

pubmed:12649441

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).</title>
<author>
<name sortKey="Mura, Cameron" sort="Mura, Cameron" uniqKey="Mura C" first="Cameron" last="Mura">Cameron Mura</name>
<affiliation>
<nlm:affiliation>Howard Hughes Medical Institute, Molecular Biology Institute, Los Angeles, California 90095-1570, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kozhukhovsky, Anna" sort="Kozhukhovsky, Anna" uniqKey="Kozhukhovsky A" first="Anna" last="Kozhukhovsky">Anna Kozhukhovsky</name>
</author>
<author>
<name sortKey="Gingery, Mari" sort="Gingery, Mari" uniqKey="Gingery M" first="Mari" last="Gingery">Mari Gingery</name>
</author>
<author>
<name sortKey="Phillips, Martin" sort="Phillips, Martin" uniqKey="Phillips M" first="Martin" last="Phillips">Martin Phillips</name>
</author>
<author>
<name sortKey="Eisenberg, David" sort="Eisenberg, David" uniqKey="Eisenberg D" first="David" last="Eisenberg">David Eisenberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12649441</idno>
<idno type="pmid">12649441</idno>
<idno type="doi">10.1110/ps.0224703</idno>
<idno type="wicri:Area/PubMed/Corpus">002463</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002463</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).</title>
<author>
<name sortKey="Mura, Cameron" sort="Mura, Cameron" uniqKey="Mura C" first="Cameron" last="Mura">Cameron Mura</name>
<affiliation>
<nlm:affiliation>Howard Hughes Medical Institute, Molecular Biology Institute, Los Angeles, California 90095-1570, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kozhukhovsky, Anna" sort="Kozhukhovsky, Anna" uniqKey="Kozhukhovsky A" first="Anna" last="Kozhukhovsky">Anna Kozhukhovsky</name>
</author>
<author>
<name sortKey="Gingery, Mari" sort="Gingery, Mari" uniqKey="Gingery M" first="Mari" last="Gingery">Mari Gingery</name>
</author>
<author>
<name sortKey="Phillips, Martin" sort="Phillips, Martin" uniqKey="Phillips M" first="Martin" last="Phillips">Martin Phillips</name>
</author>
<author>
<name sortKey="Eisenberg, David" sort="Eisenberg, David" uniqKey="Eisenberg D" first="David" last="Eisenberg">David Eisenberg</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Archaeal Proteins (metabolism)</term>
<term>Archaeal Proteins (ultrastructure)</term>
<term>Crystallography, X-Ray</term>
<term>Ligands</term>
<term>Microscopy, Electron</term>
<term>Polymers (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Archaeal Proteins</term>
<term>Polymers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Archaeal Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Ligands</term>
<term>Microscopy, Electron</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intron splicing is a prime example of the many types of RNA processing catalyzed by small nuclear ribonucleoprotein (snRNP) complexes. Sm proteins form the cores of most snRNPs, and thus to learn principles of snRNP assembly we characterized the oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs) from Pyrobaculum aerophilum (Pae) and Methanobacterium thermautotrophicum (Mth). Ultracentrifugation shows that Mth SmAP1 is exclusively heptameric in solution, whereas Pae SmAP1 forms either disulfide-bonded 14-mers or sub-heptameric states (depending on the redox potential). By electron microscopy, we show that Pae and Mth SmAP1 polymerize into bundles of well ordered fibers that probably form by head-to-tail stacking of heptamers. The crystallographic results reported here corroborate these findings by showing heptamers and 14-mers of both Mth and Pae SmAP1 in four new crystal forms. The 1.9 A-resolution structure of Mth SmAP1 bound to uridine-5'-monophosphate (UMP) reveals conserved ligand-binding sites. The likely RNA binding site in Mth agrees with that determined for Archaeoglobus fulgidus (Afu) SmAP1. Finally, we found that both Pae and Mth SmAP1 gel-shift negatively supercoiled DNA. These results distinguish SmAPs from eukaryotic Sm proteins and suggest that SmAPs have a generic single-stranded nucleic acid-binding activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12649441</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2003</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).</ArticleTitle>
<Pagination>
<MedlinePgn>832-47</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Intron splicing is a prime example of the many types of RNA processing catalyzed by small nuclear ribonucleoprotein (snRNP) complexes. Sm proteins form the cores of most snRNPs, and thus to learn principles of snRNP assembly we characterized the oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs) from Pyrobaculum aerophilum (Pae) and Methanobacterium thermautotrophicum (Mth). Ultracentrifugation shows that Mth SmAP1 is exclusively heptameric in solution, whereas Pae SmAP1 forms either disulfide-bonded 14-mers or sub-heptameric states (depending on the redox potential). By electron microscopy, we show that Pae and Mth SmAP1 polymerize into bundles of well ordered fibers that probably form by head-to-tail stacking of heptamers. The crystallographic results reported here corroborate these findings by showing heptamers and 14-mers of both Mth and Pae SmAP1 in four new crystal forms. The 1.9 A-resolution structure of Mth SmAP1 bound to uridine-5'-monophosphate (UMP) reveals conserved ligand-binding sites. The likely RNA binding site in Mth agrees with that determined for Archaeoglobus fulgidus (Afu) SmAP1. Finally, we found that both Pae and Mth SmAP1 gel-shift negatively supercoiled DNA. These results distinguish SmAPs from eukaryotic Sm proteins and suggest that SmAPs have a generic single-stranded nucleic acid-binding activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mura</LastName>
<ForeName>Cameron</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Molecular Biology Institute, Los Angeles, California 90095-1570, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kozhukhovsky</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gingery</LastName>
<ForeName>Mari</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eisenberg</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019843">Archaeal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C427487">SmAP protein, Pyrobaculum aerophilum</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019843" MajorTopicYN="N">Archaeal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="Y">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12649441</ArticleId>
<ArticleId IdType="pmc">PMC2323858</ArticleId>
<ArticleId IdType="doi">10.1110/ps.0224703</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1999 Feb 5;96(3):375-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10025403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1999 Apr;9(2):222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 May;6(5):458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jun 15;18(12):3451-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10369684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Oct;19(10):6554-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Sep 16;401(6750):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10499579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Oct 15;18(20):5789-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 2;275(22):17122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10747894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jun 30;17(2):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10900456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Jan;8(1):27-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Feb 1;20(3):612-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 25;409(6819):539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11206553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jan 15;20(1-2):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3685-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Apr 20;308(1):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11302706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 May 1;20(9):2293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 May 8;98(10):5532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2001 Jun;13(3):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11343899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jun 15;309(4):915-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11399068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Aug 17;311(3):593-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11567162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Dec;21(24):8289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2001 Nov;7(11):1531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11720283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Dec 11;11(24):1990-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 8;277(10):8243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jan;9(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11804582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jan;9(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11804583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jan;9(1):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11804584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):145-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jun 28;320(1):129-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jul 19;320(4):705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12095248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 10;278(2):1239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2025413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Mar;87(5):1710-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2137927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Aug;9(8):2555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2142451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1995 Feb;8(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Jan;12(1):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 Sep;2(9):1511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Mar;12(3):861-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8458342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Jun 20;231(4):1049-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8515464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 1;15(9):2256-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1995 Dec;5(6):774-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8745076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 24;88(2):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Jan 17;265(2):87-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Jun;9(3):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Oct 23;283(2):383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9769212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002463 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002463 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12649441
   |texte=   The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:12649441" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021