Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

G+C content dominates intrinsic nucleosome occupancy.

Identifieur interne : 001F79 ( PubMed/Corpus ); précédent : 001F78; suivant : 001F80

G+C content dominates intrinsic nucleosome occupancy.

Auteurs : Desiree Tillo ; Timothy R. Hughes

Source :

RBID : pubmed:20028554

English descriptors

Abstract

The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome in vitro. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences.

DOI: 10.1186/1471-2105-10-442
PubMed: 20028554

Links to Exploration step

pubmed:20028554

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">G+C content dominates intrinsic nucleosome occupancy.</title>
<author>
<name sortKey="Tillo, Desiree" sort="Tillo, Desiree" uniqKey="Tillo D" first="Desiree" last="Tillo">Desiree Tillo</name>
<affiliation>
<nlm:affiliation>Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. desiree.tillo@utoronto.ca</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hughes, Timothy R" sort="Hughes, Timothy R" uniqKey="Hughes T" first="Timothy R" last="Hughes">Timothy R. Hughes</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:20028554</idno>
<idno type="pmid">20028554</idno>
<idno type="doi">10.1186/1471-2105-10-442</idno>
<idno type="wicri:Area/PubMed/Corpus">001F79</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">G+C content dominates intrinsic nucleosome occupancy.</title>
<author>
<name sortKey="Tillo, Desiree" sort="Tillo, Desiree" uniqKey="Tillo D" first="Desiree" last="Tillo">Desiree Tillo</name>
<affiliation>
<nlm:affiliation>Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. desiree.tillo@utoronto.ca</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hughes, Timothy R" sort="Hughes, Timothy R" uniqKey="Hughes T" first="Timothy R" last="Hughes">Timothy R. Hughes</name>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Composition (genetics)</term>
<term>Base Sequence</term>
<term>Computational Biology (methods)</term>
<term>Databases, Genetic</term>
<term>Genome</term>
<term>Nucleosomes</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Nucleosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Base Composition</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Databases, Genetic</term>
<term>Genome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome in vitro. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20028554</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>G+C content dominates intrinsic nucleosome occupancy.</ArticleTitle>
<Pagination>
<MedlinePgn>442</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2105-10-442</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome in vitro. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We find that a simple linear combination of only 14 simple DNA sequence attributes (G+C content, two transformations of dinucleotide composition, and the frequency of eleven 4-bp sequences) explains nucleosome occupancy in vitro and in vivo in a manner comparable to the Kaplan model. G+C content and frequency of AAAA are the most important features. G+C content is dominant, alone explaining approximately 50% of the variation in nucleosome occupancy in vitro.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our findings provide a dramatically simplified means to predict and understand intrinsic nucleosome occupancy. G+C content may dominate because it both reduces frequency of poly-A-like stretches and correlates with many other DNA structural characteristics. Since G+C content is enriched or depleted at many types of features in diverse eukaryotic genomes, our results suggest that variation in nucleotide composition may have a widespread and direct influence on chromatin structure.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tillo</LastName>
<ForeName>Desiree</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. desiree.tillo@utoronto.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Timothy R</ForeName>
<Initials>TR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009707">Nucleosomes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001482" MajorTopicYN="N">Base Composition</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009707" MajorTopicYN="Y">Nucleosomes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20028554</ArticleId>
<ArticleId IdType="pii">1471-2105-10-442</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2105-10-442</ArticleId>
<ArticleId IdType="pmc">PMC2808325</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2007 Oct;39(10):1235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Aug;17(8):1170-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17620451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jun 15;24(12):1456-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(11):3746-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jul;18(7):1051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18477713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Sep;36(16):e105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Nov;4(11):e1000216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2009 Feb;19(1):65-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 19;458(7236):362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19092803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Sep;16(9):990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Nov 1;28(21):4083-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11058103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 May 7;338(4):695-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15099738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2004 Jun 1;5(1):34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Aug;36(8):900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(9):R62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Nov;108(1):219-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">826643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1985 Dec 20;186(4):773-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3912515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Oct 20;191(4):659-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3806678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Dec 20;192(4):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3586013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Jul 20;196(2):261-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3656447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jul 29;265(5172):669-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8036515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Apr 14;247(5):918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Apr 18;14(8):1812-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Sep 20;262(2):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8831784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Nov 8;263(4):511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Sep 18;389(6648):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Aug 14;281(2):253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9698546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Jul-Aug;15(7-8):654-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10487873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jun 10;18(6):735-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15949447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):626-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 17;442(7104):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16862119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Oct;38(10):1210-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Feb;25(2):244-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):707-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):721-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Aug 17;371(3):725-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Jan;4(1):e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18225943</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001F79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20028554
   |texte=   G+C content dominates intrinsic nucleosome occupancy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20028554" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021