Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2.

Identifieur interne : 001868 ( PubMed/Corpus ); précédent : 001867; suivant : 001869

Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2.

Auteurs : Jyoti K. Jha ; Rodolfo Ghirlando ; Dhruba K. Chattoraj

Source :

RBID : pubmed:25159619

English descriptors

Abstract

RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs.

DOI: 10.1093/nar/gku771
PubMed: 25159619

Links to Exploration step

pubmed:25159619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2.</title>
<author>
<name sortKey="Jha, Jyoti K" sort="Jha, Jyoti K" uniqKey="Jha J" first="Jyoti K" last="Jha">Jyoti K. Jha</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghirlando, Rodolfo" sort="Ghirlando, Rodolfo" uniqKey="Ghirlando R" first="Rodolfo" last="Ghirlando">Rodolfo Ghirlando</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA chattoraj@nih.gov.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25159619</idno>
<idno type="pmid">25159619</idno>
<idno type="doi">10.1093/nar/gku771</idno>
<idno type="wicri:Area/PubMed/Corpus">001868</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001868</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2.</title>
<author>
<name sortKey="Jha, Jyoti K" sort="Jha, Jyoti K" uniqKey="Jha J" first="Jyoti K" last="Jha">Jyoti K. Jha</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghirlando, Rodolfo" sort="Ghirlando, Rodolfo" uniqKey="Ghirlando R" first="Rodolfo" last="Ghirlando">Rodolfo Ghirlando</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA chattoraj@nih.gov.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Chromosomes, Bacterial</term>
<term>DNA (biosynthesis)</term>
<term>DNA (metabolism)</term>
<term>DNA Replication</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Tertiary</term>
<term>Vibrio cholerae (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA</term>
<term>DNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosomes, Bacterial</term>
<term>DNA Replication</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25159619</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2.</ArticleTitle>
<Pagination>
<MedlinePgn>10538-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gku771</ELocationID>
<Abstract>
<AbstractText>RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs. </AbstractText>
<CopyrightInformation>Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jha</LastName>
<ForeName>Jyoti K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghirlando</LastName>
<ForeName>Rodolfo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chattoraj</LastName>
<ForeName>Dhruba K</ForeName>
<Initials>DK</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA chattoraj@nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002876" MajorTopicYN="Y">Chromosomes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014734" MajorTopicYN="N">Vibrio cholerae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25159619</ArticleId>
<ArticleId IdType="pii">gku771</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gku771</ArticleId>
<ArticleId IdType="pmc">PMC4176361</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2000 Mar;78(3):1606-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Feb;10(2):e1004184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Mar 9;306(5):945-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 15;20(16):4577-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Jul;10(7):565-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):29952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Nov;54(3):836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 May;82(9):2588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3857601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Sep;42(2):549-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3161621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Aug 11;16(15):7351-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3045756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Dec 7;250(4986):1400-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2147779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Mar 14;350(6314):165-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jan 10;255(5041):203-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1553548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1992;61:1053-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1497306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Nov 12;262(5136):1048-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8235621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Oct;26(1):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1994 Nov;1(3):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9874774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Jun;6(6):476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15928711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Nov;187(21):7167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Dec 22;20(6):833-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Jan;188(2):789-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jul;61(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12051-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2008;84:143-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Nov;66(4):1016-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18000058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Feb;9(2):151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Sep;73(5):963-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Nov;5(11):e1000663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Mar;8(3):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jul;7(7):e1002189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2011;65:19-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21639790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 13;478(7368):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Mar 21;31(6):1542-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2012 Mar;67(2):102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22248922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jul;1819(7):826-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(13):6026-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22447451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2012 Nov;68(3):159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22487081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e49589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23166722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23277577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2013 Feb;Chapter 20:Unit20.12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23377850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jun 20;498(7454):390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23783631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Jul;20(7):876-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Aug 1;154(3):623-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23911325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2013 Dec 1;27(23):2537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24298053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jan 30;156(3):577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24485461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Aug;37(3):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001868 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001868 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25159619
   |texte=   Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25159619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021