Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pressure-induced conformation transition of o-phenylene solvated in bulk hydrocarbons.

Identifieur interne : 001793 ( PubMed/Corpus ); précédent : 001792; suivant : 001794

Pressure-induced conformation transition of o-phenylene solvated in bulk hydrocarbons.

Auteurs : Massimo Riello ; Giovanni Doni ; Sorin V. Filip ; Martin Gold ; Alessandro De Vita

Source :

RBID : pubmed:25380225

Abstract

The conformational behavior of o-phenylene 8-mers and 10-mers solvated in a series of linear alkane solvents by means of classical molecular dynamics and first-principles calculations was studied. Irrespective of the solvent used, we find that at ambient pressure the molecule sits in the well-defined close-helical arrangement previously observed in light polar solvents. However, for pressures greater than 50 atm, and for tetradecane or larger solvent molecules, our simulations predict that o-phenylene undergoes a conformational transition to an uncoiled, extended geometry with a 35% longer head-to-tail distance and a much larger overlap between its lateral aromatic ring groups. The free energy barrier for the transition was studied as a function of pressure and temperature for both solute molecules in butane and hexadecane. Gas-phase density functional theory-based nudged elastic band calculations on 8-mer and 10-mer o-phenylene were used to estimate how the pressure-induced transition energy barrier changes with solute length. Our results indicate that a sufficiently large solvent molecule size is the key factor enabling a configuration transition upon pressure changes and that longer solute molecules associate with higher conformation transition energy barriers. This suggests the possibility of designing systems in which a solute molecule can be selectively "activated" by a controlled conformation transition achieved at a predefined set of pressure and temperature conditions.

DOI: 10.1021/jp5096272
PubMed: 25380225

Links to Exploration step

pubmed:25380225

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pressure-induced conformation transition of o-phenylene solvated in bulk hydrocarbons.</title>
<author>
<name sortKey="Riello, Massimo" sort="Riello, Massimo" uniqKey="Riello M" first="Massimo" last="Riello">Massimo Riello</name>
<affiliation>
<nlm:affiliation>Physics Department, King's College London, Strand , London WC2R 2NS, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doni, Giovanni" sort="Doni, Giovanni" uniqKey="Doni G" first="Giovanni" last="Doni">Giovanni Doni</name>
</author>
<author>
<name sortKey="Filip, Sorin V" sort="Filip, Sorin V" uniqKey="Filip S" first="Sorin V" last="Filip">Sorin V. Filip</name>
</author>
<author>
<name sortKey="Gold, Martin" sort="Gold, Martin" uniqKey="Gold M" first="Martin" last="Gold">Martin Gold</name>
</author>
<author>
<name sortKey="De Vita, Alessandro" sort="De Vita, Alessandro" uniqKey="De Vita A" first="Alessandro" last="De Vita">Alessandro De Vita</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25380225</idno>
<idno type="pmid">25380225</idno>
<idno type="doi">10.1021/jp5096272</idno>
<idno type="wicri:Area/PubMed/Corpus">001793</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001793</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pressure-induced conformation transition of o-phenylene solvated in bulk hydrocarbons.</title>
<author>
<name sortKey="Riello, Massimo" sort="Riello, Massimo" uniqKey="Riello M" first="Massimo" last="Riello">Massimo Riello</name>
<affiliation>
<nlm:affiliation>Physics Department, King's College London, Strand , London WC2R 2NS, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doni, Giovanni" sort="Doni, Giovanni" uniqKey="Doni G" first="Giovanni" last="Doni">Giovanni Doni</name>
</author>
<author>
<name sortKey="Filip, Sorin V" sort="Filip, Sorin V" uniqKey="Filip S" first="Sorin V" last="Filip">Sorin V. Filip</name>
</author>
<author>
<name sortKey="Gold, Martin" sort="Gold, Martin" uniqKey="Gold M" first="Martin" last="Gold">Martin Gold</name>
</author>
<author>
<name sortKey="De Vita, Alessandro" sort="De Vita, Alessandro" uniqKey="De Vita A" first="Alessandro" last="De Vita">Alessandro De Vita</name>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. B</title>
<idno type="eISSN">1520-5207</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conformational behavior of o-phenylene 8-mers and 10-mers solvated in a series of linear alkane solvents by means of classical molecular dynamics and first-principles calculations was studied. Irrespective of the solvent used, we find that at ambient pressure the molecule sits in the well-defined close-helical arrangement previously observed in light polar solvents. However, for pressures greater than 50 atm, and for tetradecane or larger solvent molecules, our simulations predict that o-phenylene undergoes a conformational transition to an uncoiled, extended geometry with a 35% longer head-to-tail distance and a much larger overlap between its lateral aromatic ring groups. The free energy barrier for the transition was studied as a function of pressure and temperature for both solute molecules in butane and hexadecane. Gas-phase density functional theory-based nudged elastic band calculations on 8-mer and 10-mer o-phenylene were used to estimate how the pressure-induced transition energy barrier changes with solute length. Our results indicate that a sufficiently large solvent molecule size is the key factor enabling a configuration transition upon pressure changes and that longer solute molecules associate with higher conformation transition energy barriers. This suggests the possibility of designing systems in which a solute molecule can be selectively "activated" by a controlled conformation transition achieved at a predefined set of pressure and temperature conditions. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25380225</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5207</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>118</Volume>
<Issue>47</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. B</Title>
<ISOAbbreviation>J Phys Chem B</ISOAbbreviation>
</Journal>
<ArticleTitle>Pressure-induced conformation transition of o-phenylene solvated in bulk hydrocarbons.</ArticleTitle>
<Pagination>
<MedlinePgn>13689-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jp5096272</ELocationID>
<Abstract>
<AbstractText>The conformational behavior of o-phenylene 8-mers and 10-mers solvated in a series of linear alkane solvents by means of classical molecular dynamics and first-principles calculations was studied. Irrespective of the solvent used, we find that at ambient pressure the molecule sits in the well-defined close-helical arrangement previously observed in light polar solvents. However, for pressures greater than 50 atm, and for tetradecane or larger solvent molecules, our simulations predict that o-phenylene undergoes a conformational transition to an uncoiled, extended geometry with a 35% longer head-to-tail distance and a much larger overlap between its lateral aromatic ring groups. The free energy barrier for the transition was studied as a function of pressure and temperature for both solute molecules in butane and hexadecane. Gas-phase density functional theory-based nudged elastic band calculations on 8-mer and 10-mer o-phenylene were used to estimate how the pressure-induced transition energy barrier changes with solute length. Our results indicate that a sufficiently large solvent molecule size is the key factor enabling a configuration transition upon pressure changes and that longer solute molecules associate with higher conformation transition energy barriers. This suggests the possibility of designing systems in which a solute molecule can be selectively "activated" by a controlled conformation transition achieved at a predefined set of pressure and temperature conditions. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riello</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Physics Department, King's College London, Strand , London WC2R 2NS, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doni</LastName>
<ForeName>Giovanni</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Filip</LastName>
<ForeName>Sorin V</ForeName>
<Initials>SV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gold</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Vita</LastName>
<ForeName>Alessandro</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem B</MedlineTA>
<NlmUniqueID>101157530</NlmUniqueID>
<ISSNLinking>1520-5207</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25380225</ArticleId>
<ArticleId IdType="doi">10.1021/jp5096272</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001793 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001793 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25380225
   |texte=   Pressure-induced conformation transition of o-phenylene solvated in bulk hydrocarbons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25380225" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021