Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes.

Identifieur interne : 001687 ( PubMed/Corpus ); précédent : 001686; suivant : 001688

Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes.

Auteurs : Fernando Almazán ; Silvia Márquez-Jurado ; Aitor Nogales ; Luis Enjuanes

Source :

RBID : pubmed:25720478

English descriptors

Abstract

The large size of the coronavirus (CoV) genome (around 30 kb) and the instability in bacteria of plasmids carrying CoV replicase sequences represent serious restrictions for the development of CoV infectious clones using reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these problems, several approaches have been established in the last 13 years. Here we describe the engineering of CoV full-length cDNA clones as bacterial artificial chromosomes (BACs), using the Middle East respiratory syndrome CoV (MERS-CoV) as a model.

DOI: 10.1007/978-1-4939-2438-7_13
PubMed: 25720478

Links to Exploration step

pubmed:25720478

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes.</title>
<author>
<name sortKey="Almazan, Fernando" sort="Almazan, Fernando" uniqKey="Almazan F" first="Fernando" last="Almazán">Fernando Almazán</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, Madrid, 28049, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marquez Jurado, Silvia" sort="Marquez Jurado, Silvia" uniqKey="Marquez Jurado S" first="Silvia" last="Márquez-Jurado">Silvia Márquez-Jurado</name>
</author>
<author>
<name sortKey="Nogales, Aitor" sort="Nogales, Aitor" uniqKey="Nogales A" first="Aitor" last="Nogales">Aitor Nogales</name>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25720478</idno>
<idno type="pmid">25720478</idno>
<idno type="doi">10.1007/978-1-4939-2438-7_13</idno>
<idno type="wicri:Area/PubMed/Corpus">001687</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001687</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes.</title>
<author>
<name sortKey="Almazan, Fernando" sort="Almazan, Fernando" uniqKey="Almazan F" first="Fernando" last="Almazán">Fernando Almazán</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, Madrid, 28049, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marquez Jurado, Silvia" sort="Marquez Jurado, Silvia" uniqKey="Marquez Jurado S" first="Silvia" last="Márquez-Jurado">Silvia Márquez-Jurado</name>
</author>
<author>
<name sortKey="Nogales, Aitor" sort="Nogales, Aitor" uniqKey="Nogales A" first="Aitor" last="Nogales">Aitor Nogales</name>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
</author>
</analytic>
<series>
<title level="j">Methods in molecular biology (Clifton, N.J.)</title>
<idno type="eISSN">1940-6029</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chromosomes, Artificial, Bacterial (genetics)</term>
<term>Coronavirus (genetics)</term>
<term>Cricetinae</term>
<term>DNA, Complementary (genetics)</term>
<term>Escherichia coli</term>
<term>Genetic Engineering</term>
<term>Humans</term>
<term>Plasmids (genetics)</term>
<term>Plasmids (isolation & purification)</term>
<term>Reverse Genetics</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Artificial, Bacterial</term>
<term>Coronavirus</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Cricetinae</term>
<term>Escherichia coli</term>
<term>Genetic Engineering</term>
<term>Humans</term>
<term>Reverse Genetics</term>
<term>Transformation, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The large size of the coronavirus (CoV) genome (around 30 kb) and the instability in bacteria of plasmids carrying CoV replicase sequences represent serious restrictions for the development of CoV infectious clones using reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these problems, several approaches have been established in the last 13 years. Here we describe the engineering of CoV full-length cDNA clones as bacterial artificial chromosomes (BACs), using the Middle East respiratory syndrome CoV (MERS-CoV) as a model. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25720478</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-6029</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1282</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Methods in molecular biology (Clifton, N.J.)</Title>
<ISOAbbreviation>Methods Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes.</ArticleTitle>
<Pagination>
<MedlinePgn>135-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-1-4939-2438-7_13</ELocationID>
<Abstract>
<AbstractText>The large size of the coronavirus (CoV) genome (around 30 kb) and the instability in bacteria of plasmids carrying CoV replicase sequences represent serious restrictions for the development of CoV infectious clones using reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these problems, several approaches have been established in the last 13 years. Here we describe the engineering of CoV full-length cDNA clones as bacterial artificial chromosomes (BACs), using the Middle East respiratory syndrome CoV (MERS-CoV) as a model. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Almazán</LastName>
<ForeName>Fernando</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, Madrid, 28049, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Márquez-Jurado</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nogales</LastName>
<ForeName>Aitor</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Enjuanes</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Mol Biol</MedlineTA>
<NlmUniqueID>9214969</NlmUniqueID>
<ISSNLinking>1064-3745</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059386" MajorTopicYN="N">Reverse Genetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25720478</ArticleId>
<ArticleId IdType="doi">10.1007/978-1-4939-2438-7_13</ArticleId>
<ArticleId IdType="pmc">PMC4726977</ArticleId>
<ArticleId IdType="mid">NIHMS751531</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1528894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Jan;70(1):508-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8523564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1997 Dec;23(6):992-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9421622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Oct;20(2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9771703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2006 Feb;40(2):191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16526409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(7):3670-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jun;86(11):6258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(5):e00650-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Nov;74(22):10600-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2001 Apr 1;73(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Jun;82(Pt 6):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11369870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Dec;75(24):12359-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2003 Jul;82(1):68-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12809677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001687 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001687 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25720478
   |texte=   Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25720478" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021