Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.

Identifieur interne : 001468 ( PubMed/Corpus ); précédent : 001467; suivant : 001469

Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.

Auteurs : Brian Cleary ; Ilana Lauren Brito ; Katherine Huang ; Dirk Gevers ; Terrance Shea ; Sarah Young ; Eric J. Alm

Source :

RBID : pubmed:26368049

English descriptors

Abstract

Analyses of metagenomic datasets that are sequenced to a depth of billions or trillions of bases can uncover hundreds of microbial genomes, but naive assembly of these data is computationally intensive, requiring hundreds of gigabytes to terabytes of RAM. We present latent strain analysis (LSA), a scalable, de novo pre-assembly method that separates reads into biologically informed partitions and thereby enables assembly of individual genomes. LSA is implemented with a streaming calculation of unobserved variables that we call eigengenomes. Eigengenomes reflect covariance in the abundance of short, fixed-length sequences, or k-mers. As the abundance of each genome in a sample is reflected in the abundance of each k-mer in that genome, eigengenome analysis can be used to partition reads from different genomes. This partitioning can be done in fixed memory using tens of gigabytes of RAM, which makes assembly and downstream analyses of terabytes of data feasible on commodity hardware. Using LSA, we assemble partial and near-complete genomes of bacterial taxa present at relative abundances as low as 0.00001%. We also show that LSA is sensitive enough to separate reads from several strains of the same species.

DOI: 10.1038/nbt.3329
PubMed: 26368049

Links to Exploration step

pubmed:26368049

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.</title>
<author>
<name sortKey="Cleary, Brian" sort="Cleary, Brian" uniqKey="Cleary B" first="Brian" last="Cleary">Brian Cleary</name>
<affiliation>
<nlm:affiliation>Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brito, Ilana Lauren" sort="Brito, Ilana Lauren" uniqKey="Brito I" first="Ilana Lauren" last="Brito">Ilana Lauren Brito</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Katherine" sort="Huang, Katherine" uniqKey="Huang K" first="Katherine" last="Huang">Katherine Huang</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gevers, Dirk" sort="Gevers, Dirk" uniqKey="Gevers D" first="Dirk" last="Gevers">Dirk Gevers</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shea, Terrance" sort="Shea, Terrance" uniqKey="Shea T" first="Terrance" last="Shea">Terrance Shea</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Young, Sarah" sort="Young, Sarah" uniqKey="Young S" first="Sarah" last="Young">Sarah Young</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alm, Eric J" sort="Alm, Eric J" uniqKey="Alm E" first="Eric J" last="Alm">Eric J. Alm</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26368049</idno>
<idno type="pmid">26368049</idno>
<idno type="doi">10.1038/nbt.3329</idno>
<idno type="wicri:Area/PubMed/Corpus">001468</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001468</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.</title>
<author>
<name sortKey="Cleary, Brian" sort="Cleary, Brian" uniqKey="Cleary B" first="Brian" last="Cleary">Brian Cleary</name>
<affiliation>
<nlm:affiliation>Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brito, Ilana Lauren" sort="Brito, Ilana Lauren" uniqKey="Brito I" first="Ilana Lauren" last="Brito">Ilana Lauren Brito</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Katherine" sort="Huang, Katherine" uniqKey="Huang K" first="Katherine" last="Huang">Katherine Huang</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gevers, Dirk" sort="Gevers, Dirk" uniqKey="Gevers D" first="Dirk" last="Gevers">Dirk Gevers</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shea, Terrance" sort="Shea, Terrance" uniqKey="Shea T" first="Terrance" last="Shea">Terrance Shea</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Young, Sarah" sort="Young, Sarah" uniqKey="Young S" first="Sarah" last="Young">Sarah Young</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alm, Eric J" sort="Alm, Eric J" uniqKey="Alm E" first="Eric J" last="Alm">Eric J. Alm</name>
<affiliation>
<nlm:affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature biotechnology</title>
<idno type="eISSN">1546-1696</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Chromosome Mapping (methods)</term>
<term>Databases, Genetic</term>
<term>Datasets as Topic</term>
<term>Epigenesis, Genetic (genetics)</term>
<term>Genome, Bacterial (genetics)</term>
<term>Metagenomics (methods)</term>
<term>Microbiota (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Epigenesis, Genetic</term>
<term>Genome, Bacterial</term>
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Metagenomics</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Databases, Genetic</term>
<term>Datasets as Topic</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Analyses of metagenomic datasets that are sequenced to a depth of billions or trillions of bases can uncover hundreds of microbial genomes, but naive assembly of these data is computationally intensive, requiring hundreds of gigabytes to terabytes of RAM. We present latent strain analysis (LSA), a scalable, de novo pre-assembly method that separates reads into biologically informed partitions and thereby enables assembly of individual genomes. LSA is implemented with a streaming calculation of unobserved variables that we call eigengenomes. Eigengenomes reflect covariance in the abundance of short, fixed-length sequences, or k-mers. As the abundance of each genome in a sample is reflected in the abundance of each k-mer in that genome, eigengenome analysis can be used to partition reads from different genomes. This partitioning can be done in fixed memory using tens of gigabytes of RAM, which makes assembly and downstream analyses of terabytes of data feasible on commodity hardware. Using LSA, we assemble partial and near-complete genomes of bacterial taxa present at relative abundances as low as 0.00001%. We also show that LSA is sensitive enough to separate reads from several strains of the same species. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26368049</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1546-1696</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Nature biotechnology</Title>
<ISOAbbreviation>Nat. Biotechnol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.</ArticleTitle>
<Pagination>
<MedlinePgn>1053-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nbt.3329</ELocationID>
<Abstract>
<AbstractText>Analyses of metagenomic datasets that are sequenced to a depth of billions or trillions of bases can uncover hundreds of microbial genomes, but naive assembly of these data is computationally intensive, requiring hundreds of gigabytes to terabytes of RAM. We present latent strain analysis (LSA), a scalable, de novo pre-assembly method that separates reads into biologically informed partitions and thereby enables assembly of individual genomes. LSA is implemented with a streaming calculation of unobserved variables that we call eigengenomes. Eigengenomes reflect covariance in the abundance of short, fixed-length sequences, or k-mers. As the abundance of each genome in a sample is reflected in the abundance of each k-mer in that genome, eigengenome analysis can be used to partition reads from different genomes. This partitioning can be done in fixed memory using tens of gigabytes of RAM, which makes assembly and downstream analyses of terabytes of data feasible on commodity hardware. Using LSA, we assemble partial and near-complete genomes of bacterial taxa present at relative abundances as low as 0.00001%. We also show that LSA is sensitive enough to separate reads from several strains of the same species. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cleary</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brito</LastName>
<ForeName>Ilana Lauren</ForeName>
<Initials>IL</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Katherine</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gevers</LastName>
<ForeName>Dirk</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shea</LastName>
<ForeName>Terrance</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alm</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM087237</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54HG003067</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Biotechnol</MedlineTA>
<NlmUniqueID>9604648</NlmUniqueID>
<ISSNLinking>1087-0156</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Biotechnol. 2015 Oct;33(10):1041-3</RefSource>
<PMID Version="1">26448087</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066264" MajorTopicYN="N">Datasets as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="N">Genome, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056186" MajorTopicYN="N">Metagenomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26368049</ArticleId>
<ArticleId IdType="pii">nbt.3329</ArticleId>
<ArticleId IdType="doi">10.1038/nbt.3329</ArticleId>
<ArticleId IdType="pmc">PMC4720164</ArticleId>
<ArticleId IdType="mid">NIHMS750926</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PeerJ. 2014 Sep 30;2:e603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25289188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Nov;18(11):1851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18714091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 12;473(7346):174-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Nov 1;40(20):e155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22821567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Jan;191(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Aug;32(8):822-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24997787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2012;13(12):R122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Inform Exp. 2012 Feb 09;2(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 May 15;31(10):1674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jun;3(6):470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2009 Jul;10(4):354-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19482960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(1):e1002863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23326225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Dec;19(12):2317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19819907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Jun;31(6):533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Nov;73(21):7059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17827313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 26;309(5739):1387-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16123304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Jan;23(1):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Apr 22;308(5721):554-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15845853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4904-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24632729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Nov;11(11):1144-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25218180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Mar;7(3):652-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatrics. 2010 Apr;125(4):777-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(10):R151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18851752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jul 1;27(13):i94-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12 Suppl 2:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21989143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001468 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001468 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26368049
   |texte=   Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26368049" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021