Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.

Identifieur interne : 000B30 ( PubMed/Corpus ); précédent : 000B29; suivant : 000B31

The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.

Auteurs : Abdulkadir Elmas ; Xiaodong Wang ; Jacqueline M. Dresch

Source :

RBID : pubmed:28982128

English descriptors

Abstract

Understanding the molecular machinery involved in transcriptional regulation is central to improving our knowledge of an organism's development, disease, and evolution. The building blocks of this complex molecular machinery are an organism's genomic DNA sequence and transcription factor proteins. Despite the vast amount of sequence data now available for many model organisms, predicting where transcription factors bind, often referred to as 'motif detection' is still incredibly challenging. In this study, we develop a novel bioinformatic approach to binding site prediction. We do this by extending pre-existing SVM approaches in an unbiased way to include all possible gapped k-mers, representing different combinations of complex nucleotide dependencies within binding sites. We show the advantages of this new approach when compared to existing SVM approaches, through a rigorous set of cross-validation experiments. We also demonstrate the effectiveness of our new approach by reporting on its improved performance on a set of 127 genomic regions known to regulate gene expression along the anterio-posterior axis in early Drosophila embryos.

DOI: 10.1371/journal.pone.0185570
PubMed: 28982128

Links to Exploration step

pubmed:28982128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.</title>
<author>
<name sortKey="Elmas, Abdulkadir" sort="Elmas, Abdulkadir" uniqKey="Elmas A" first="Abdulkadir" last="Elmas">Abdulkadir Elmas</name>
<affiliation>
<nlm:affiliation>Department of Electrical Engineering, Columbia University, New York, NY, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
<affiliation>
<nlm:affiliation>Department of Electrical Engineering, Columbia University, New York, NY, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dresch, Jacqueline M" sort="Dresch, Jacqueline M" uniqKey="Dresch J" first="Jacqueline M" last="Dresch">Jacqueline M. Dresch</name>
<affiliation>
<nlm:affiliation>Department of Mathematics and Computer Science, Clark University, Worcester, MA, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28982128</idno>
<idno type="pmid">28982128</idno>
<idno type="doi">10.1371/journal.pone.0185570</idno>
<idno type="wicri:Area/PubMed/Corpus">000B30</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.</title>
<author>
<name sortKey="Elmas, Abdulkadir" sort="Elmas, Abdulkadir" uniqKey="Elmas A" first="Abdulkadir" last="Elmas">Abdulkadir Elmas</name>
<affiliation>
<nlm:affiliation>Department of Electrical Engineering, Columbia University, New York, NY, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
<affiliation>
<nlm:affiliation>Department of Electrical Engineering, Columbia University, New York, NY, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dresch, Jacqueline M" sort="Dresch, Jacqueline M" uniqKey="Dresch J" first="Jacqueline M" last="Dresch">Jacqueline M. Dresch</name>
<affiliation>
<nlm:affiliation>Department of Mathematics and Computer Science, Clark University, Worcester, MA, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Machine Learning</term>
<term>Nucleotides (metabolism)</term>
<term>Support Vector Machine</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nucleotides</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Machine Learning</term>
<term>Support Vector Machine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the molecular machinery involved in transcriptional regulation is central to improving our knowledge of an organism's development, disease, and evolution. The building blocks of this complex molecular machinery are an organism's genomic DNA sequence and transcription factor proteins. Despite the vast amount of sequence data now available for many model organisms, predicting where transcription factors bind, often referred to as 'motif detection' is still incredibly challenging. In this study, we develop a novel bioinformatic approach to binding site prediction. We do this by extending pre-existing SVM approaches in an unbiased way to include all possible gapped k-mers, representing different combinations of complex nucleotide dependencies within binding sites. We show the advantages of this new approach when compared to existing SVM approaches, through a rigorous set of cross-validation experiments. We also demonstrate the effectiveness of our new approach by reporting on its improved performance on a set of 127 genomic regions known to regulate gene expression along the anterio-posterior axis in early Drosophila embryos.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28982128</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.</ArticleTitle>
<Pagination>
<MedlinePgn>e0185570</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0185570</ELocationID>
<Abstract>
<AbstractText>Understanding the molecular machinery involved in transcriptional regulation is central to improving our knowledge of an organism's development, disease, and evolution. The building blocks of this complex molecular machinery are an organism's genomic DNA sequence and transcription factor proteins. Despite the vast amount of sequence data now available for many model organisms, predicting where transcription factors bind, often referred to as 'motif detection' is still incredibly challenging. In this study, we develop a novel bioinformatic approach to binding site prediction. We do this by extending pre-existing SVM approaches in an unbiased way to include all possible gapped k-mers, representing different combinations of complex nucleotide dependencies within binding sites. We show the advantages of this new approach when compared to existing SVM approaches, through a rigorous set of cross-validation experiments. We also demonstrate the effectiveness of our new approach by reporting on its improved performance on a set of 127 genomic regions known to regulate gene expression along the anterio-posterior axis in early Drosophila embryos.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Elmas</LastName>
<ForeName>Abdulkadir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical Engineering, Columbia University, New York, NY, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiaodong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical Engineering, Columbia University, New York, NY, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dresch</LastName>
<ForeName>Jacqueline M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-7626-4959</Identifier>
<AffiliationInfo>
<Affiliation>Department of Mathematics and Computer Science, Clark University, Worcester, MA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R15 GM110571</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069550" MajorTopicYN="Y">Machine Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060388" MajorTopicYN="N">Support Vector Machine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28982128</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0185570</ArticleId>
<ArticleId IdType="pii">PONE-D-17-26105</ArticleId>
<ArticleId IdType="pmc">PMC5628859</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2008 Nov 4;6(11):e263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 1;26(1):304-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1501-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Jan;137(1):5-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Feb;31(2):126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23354101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Nov 1;323(4):701-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12419259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2015 Nov 21;385:153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26362104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Jun 26;10(6):e1003677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24967590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Mar 1;20(4):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(Web Server issue):W56-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23703209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Jun 18;13(7):469-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):505-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6364039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1307-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(10):1578-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18802439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Regul Syst Bio. 2016 Jun 12;10:21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27330274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 22;5(3):e9722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20339533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015 Jan 31;16:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25637281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Jul-Aug;15(7-8):563-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10487864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 13;9(6):e99015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 May 11;10(9):2997-3011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7048259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 03;9(9):e106691</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12 ):2167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21875935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jun 15;29(12):2471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11410653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Sep 23;54(7):1081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3046753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2013 Jul 15;62(1):91-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23732772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Mar 10;356(5):1137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24214955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Feb 20;193(4):723-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3612791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2011 Nov 15;359(2):290-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10618406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 12;7(1):3217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28607381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W65-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25958395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Apr 7;247(4):536-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Apr;5(4):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(9):e1003214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24039567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2002;:564-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11928508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007 Sep 27;8 Suppl 6:S7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17903288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):95-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jan 1;24(1):189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8594577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 May;36(8):2547-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Jul 17;10(7):e1003711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 29;78(2):211-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8044836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2013 Oct 04;14:298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24093548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2017 Apr 05;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28391205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28982128
   |texte=   The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28982128" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021