Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning.

Identifieur interne : 000B29 ( PubMed/Corpus ); précédent : 000B28; suivant : 000B30

Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning.

Auteurs : Doreen Muth ; Benjamin Meyer ; Daniela Niemeyer ; Simon Schroeder ; Nikolaus Osterrieder ; Marcel Alexander Müller ; Christian Drosten

Source :

RBID : pubmed:28984231

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×105 p.f.u. ml-1 and 3×105 p.f.u. ml-1, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.

DOI: 10.1099/jgv.0.000919
PubMed: 28984231

Links to Exploration step

pubmed:28984231

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning.</title>
<author>
<name sortKey="Muth, Doreen" sort="Muth, Doreen" uniqKey="Muth D" first="Doreen" last="Muth">Doreen Muth</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Benjamin" sort="Meyer, Benjamin" uniqKey="Meyer B" first="Benjamin" last="Meyer">Benjamin Meyer</name>
<affiliation>
<nlm:affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Niemeyer, Daniela" sort="Niemeyer, Daniela" uniqKey="Niemeyer D" first="Daniela" last="Niemeyer">Daniela Niemeyer</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, Simon" sort="Schroeder, Simon" uniqKey="Schroeder S" first="Simon" last="Schroeder">Simon Schroeder</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Osterrieder, Nikolaus" sort="Osterrieder, Nikolaus" uniqKey="Osterrieder N" first="Nikolaus" last="Osterrieder">Nikolaus Osterrieder</name>
<affiliation>
<nlm:affiliation>Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Marcel Alexander" sort="Muller, Marcel Alexander" uniqKey="Muller M" first="Marcel Alexander" last="Müller">Marcel Alexander Müller</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<affiliation>
<nlm:affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28984231</idno>
<idno type="pmid">28984231</idno>
<idno type="doi">10.1099/jgv.0.000919</idno>
<idno type="wicri:Area/PubMed/Corpus">000B29</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning.</title>
<author>
<name sortKey="Muth, Doreen" sort="Muth, Doreen" uniqKey="Muth D" first="Doreen" last="Muth">Doreen Muth</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Benjamin" sort="Meyer, Benjamin" uniqKey="Meyer B" first="Benjamin" last="Meyer">Benjamin Meyer</name>
<affiliation>
<nlm:affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Niemeyer, Daniela" sort="Niemeyer, Daniela" uniqKey="Niemeyer D" first="Daniela" last="Niemeyer">Daniela Niemeyer</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, Simon" sort="Schroeder, Simon" uniqKey="Schroeder S" first="Simon" last="Schroeder">Simon Schroeder</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Osterrieder, Nikolaus" sort="Osterrieder, Nikolaus" uniqKey="Osterrieder N" first="Nikolaus" last="Osterrieder">Nikolaus Osterrieder</name>
<affiliation>
<nlm:affiliation>Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Marcel Alexander" sort="Muller, Marcel Alexander" uniqKey="Muller M" first="Marcel Alexander" last="Müller">Marcel Alexander Müller</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<affiliation>
<nlm:affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of general virology</title>
<idno type="eISSN">1465-2099</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×10
<sup>5</sup>
 p.f.u. ml
<sup>-1</sup>
and 3×10
<sup>5</sup>
 p.f.u. ml
<sup>-1</sup>
, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28984231</PMID>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1465-2099</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>98</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of general virology</Title>
<ISOAbbreviation>J. Gen. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning.</ArticleTitle>
<Pagination>
<MedlinePgn>2461-2469</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1099/jgv.0.000919</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×10
<sup>5</sup>
 p.f.u. ml
<sup>-1</sup>
and 3×10
<sup>5</sup>
 p.f.u. ml
<sup>-1</sup>
, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muth</LastName>
<ForeName>Doreen</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>German Centre for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niemeyer</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schroeder</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Osterrieder</LastName>
<ForeName>Nikolaus</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Marcel Alexander</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Drosten</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>German Centre for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Gen Virol</MedlineTA>
<NlmUniqueID>0077340</NlmUniqueID>
<ISSNLinking>0022-1317</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">recombination</Keyword>
<Keyword MajorTopicYN="N">reporter virus</Keyword>
<Keyword MajorTopicYN="N">reverse genetics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28984231</ArticleId>
<ArticleId IdType="doi">10.1099/jgv.0.000919</ArticleId>
<ArticleId IdType="pmc">PMC5725994</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Infect Dis. 2016 Jun;47:23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27062985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Dec 03;5:17554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26631542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Sep 27;17(39):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Ecol Epidemiol. 2015 Jul 15;5:28305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26183160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Nov 25;368(2):296-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2006 Aug 31;3:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2012 Mar;17(3):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22068705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2015 Feb 26;372(9):846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2015 Sep 03;13:210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26336062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Osong Public Health Res Perspect. 2015 Aug;6(4):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26473095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jan;87(1):177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Aug 28;371(9):828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25162889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2006 Feb;40(2):191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16526409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Sep 10;4(5):e00650-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2013 Aug 24;382(9893):694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Oct 04;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2012 Dec;93(Pt 12):2606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22971818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Apr;95(Pt 4):874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Vaccines Ther. 2004 Sep 13;2(1):13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15363111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Feb 25;5(2):e00884-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24570370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 26;12 (10 ):e1005982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 29;7(2):e00258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2506-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2009 Aug 24;6:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2011;81:85-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Aug;20(8):1319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12 ):2093-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2013 Dec;4(12):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Nov 20;3(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Global Health. 2017 Feb 8;13(1):9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28179007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e18556</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21602908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Aug;94(Pt 8):1749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2015 Jun;21(6):1019-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25989145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2016 Dec;71(12 ):3340-3350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27585965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 May;77(10):5598-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719552</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28984231
   |texte=   Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28984231" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021