Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy.

Identifieur interne : 000901 ( PubMed/Corpus ); précédent : 000900; suivant : 000902

Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy.

Auteurs : Alejandro Sanz-Bravo ; Adrian Martín-Esteban ; Jonas J W. Kuiper ; Marina García-Peydr ; Eilon Barnea ; Arie Admon ; José A. L Pez De Castro

Source :

RBID : pubmed:29769354

English descriptors

Abstract

Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.

DOI: 10.1074/mcp.RA118.000778
PubMed: 29769354

Links to Exploration step

pubmed:29769354

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy.</title>
<author>
<name sortKey="Sanz Bravo, Alejandro" sort="Sanz Bravo, Alejandro" uniqKey="Sanz Bravo A" first="Alejandro" last="Sanz-Bravo">Alejandro Sanz-Bravo</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin Esteban, Adrian" sort="Martin Esteban, Adrian" uniqKey="Martin Esteban A" first="Adrian" last="Martín-Esteban">Adrian Martín-Esteban</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuiper, Jonas J W" sort="Kuiper, Jonas J W" uniqKey="Kuiper J" first="Jonas J W" last="Kuiper">Jonas J W. Kuiper</name>
<affiliation>
<nlm:affiliation>§Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garcia Peydr, Marina" sort="Garcia Peydr, Marina" uniqKey="Garcia Peydr M" first="Marina" last="García-Peydr">Marina García-Peydr</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barnea, Eilon" sort="Barnea, Eilon" uniqKey="Barnea E" first="Eilon" last="Barnea">Eilon Barnea</name>
<affiliation>
<nlm:affiliation>¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Admon, Arie" sort="Admon, Arie" uniqKey="Admon A" first="Arie" last="Admon">Arie Admon</name>
<affiliation>
<nlm:affiliation>¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="L Pez De Castro, Jose A" sort="L Pez De Castro, Jose A" uniqKey="L Pez De Castro J" first="José A" last="L Pez De Castro">José A. L Pez De Castro</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain; aldecastro@cbm.csic.es.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29769354</idno>
<idno type="pmid">29769354</idno>
<idno type="doi">10.1074/mcp.RA118.000778</idno>
<idno type="wicri:Area/PubMed/Corpus">000901</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000901</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy.</title>
<author>
<name sortKey="Sanz Bravo, Alejandro" sort="Sanz Bravo, Alejandro" uniqKey="Sanz Bravo A" first="Alejandro" last="Sanz-Bravo">Alejandro Sanz-Bravo</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin Esteban, Adrian" sort="Martin Esteban, Adrian" uniqKey="Martin Esteban A" first="Adrian" last="Martín-Esteban">Adrian Martín-Esteban</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuiper, Jonas J W" sort="Kuiper, Jonas J W" uniqKey="Kuiper J" first="Jonas J W" last="Kuiper">Jonas J W. Kuiper</name>
<affiliation>
<nlm:affiliation>§Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garcia Peydr, Marina" sort="Garcia Peydr, Marina" uniqKey="Garcia Peydr M" first="Marina" last="García-Peydr">Marina García-Peydr</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barnea, Eilon" sort="Barnea, Eilon" uniqKey="Barnea E" first="Eilon" last="Barnea">Eilon Barnea</name>
<affiliation>
<nlm:affiliation>¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Admon, Arie" sort="Admon, Arie" uniqKey="Admon A" first="Arie" last="Admon">Arie Admon</name>
<affiliation>
<nlm:affiliation>¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="L Pez De Castro, Jose A" sort="L Pez De Castro, Jose A" uniqKey="L Pez De Castro J" first="José A" last="L Pez De Castro">José A. L Pez De Castro</name>
<affiliation>
<nlm:affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain; aldecastro@cbm.csic.es.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular & cellular proteomics : MCP</title>
<idno type="eISSN">1535-9484</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles</term>
<term>Aminopeptidases (chemistry)</term>
<term>Aminopeptidases (genetics)</term>
<term>Aminopeptidases (metabolism)</term>
<term>Birdshot Chorioretinopathy</term>
<term>Cell Line</term>
<term>Chorioretinitis (genetics)</term>
<term>Genetic Predisposition to Disease</term>
<term>HLA-A Antigens (genetics)</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Ligands</term>
<term>Peptides (metabolism)</term>
<term>Proteome (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Aminopeptidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminopeptidases</term>
<term>HLA-A Antigens</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aminopeptidases</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chorioretinitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Birdshot Chorioretinopathy</term>
<term>Cell Line</term>
<term>Genetic Predisposition to Disease</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Ligands</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29769354</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-9484</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Molecular & cellular proteomics : MCP</Title>
<ISOAbbreviation>Mol. Cell Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy.</ArticleTitle>
<Pagination>
<MedlinePgn>1564-1577</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/mcp.RA118.000778</ELocationID>
<Abstract>
<AbstractText>Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.</AbstractText>
<CopyrightInformation>© 2018 Sanz-Bravo et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sanz-Bravo</LastName>
<ForeName>Alejandro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martín-Esteban</LastName>
<ForeName>Adrian</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuiper</LastName>
<ForeName>Jonas J W</ForeName>
<Initials>JJW</Initials>
<AffiliationInfo>
<Affiliation>§Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García-Peydró</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barnea</LastName>
<ForeName>Eilon</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Admon</LastName>
<ForeName>Arie</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>López de Castro</LastName>
<ForeName>José A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain; aldecastro@cbm.csic.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Proteomics</MedlineTA>
<NlmUniqueID>101125647</NlmUniqueID>
<ISSNLinking>1535-9476</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015234">HLA-A Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C035524">HLA-A29 antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.11.-</RegistryNumber>
<NameOfSubstance UI="D000626">Aminopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.11.-</RegistryNumber>
<NameOfSubstance UI="C503944">ERAP2 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C537630">Birdshot chorioretinopathy</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="Y">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000626" MajorTopicYN="N">Aminopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000080365" MajorTopicYN="N">Birdshot Chorioretinopathy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002825" MajorTopicYN="N">Chorioretinitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020022" MajorTopicYN="Y">Genetic Predisposition to Disease</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015234" MajorTopicYN="N">HLA-A Antigens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Antigen processing</Keyword>
<Keyword MajorTopicYN="Y">Birdshot chorioretinopathy</Keyword>
<Keyword MajorTopicYN="Y">ERAP2</Keyword>
<Keyword MajorTopicYN="Y">Enzymes</Keyword>
<Keyword MajorTopicYN="Y">HLA-A*29:02</Keyword>
<Keyword MajorTopicYN="Y">Immunology</Keyword>
<Keyword MajorTopicYN="Y">Inflammation</Keyword>
<Keyword MajorTopicYN="Y">Mass Spectrometry</Keyword>
<Keyword MajorTopicYN="Y">Peptides</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29769354</ArticleId>
<ArticleId IdType="pii">RA118.000778</ArticleId>
<ArticleId IdType="doi">10.1074/mcp.RA118.000778</ArticleId>
<ArticleId IdType="pmc">PMC6072538</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Rheumatology (Oxford). 2013 Nov;52(11):1952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23804219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Surv Ophthalmol. 2005 Nov-Dec;50(6):519-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Immun. 2008 Apr;9(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2012 Jun 28;119(26):e181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):213-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 2012 Mar;64(3):177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2015 Mar;67(3):692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25469497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Feb 15;188(4):1840-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Dec;13(12):3367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25187574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Ophthalmol. 2013 Aug;156(2):400-406.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2014 Jan;57(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23993278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Nov;11(11):1416-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22918227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Ophthalmol. 2017 Jul;101(7):851-855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28314830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 Jul;14(7):1770-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25892735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eye (Lond). 2012 Jun;26(6):862-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Jun 9;292(23):9680-9689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2015 Mar 1;75(5):824-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25592150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Apr 15;435(2):411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21314638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2016 Feb;68(2):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26360328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 Jul;6(7):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2002 Dec;3(12):1177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12436110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2017 Apr;16(4):642-662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28188227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2016 Oct;68(10):2466-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27110896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Dec;72(12):9873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Apr 1;190(7):3216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23440420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Nov 1;183(9):5526-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19828632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2016 Apr;68(4):901-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26841353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Ophthalmol. 2002 Dec;86(12):1439-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Apr 1;10(4):1794-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21254760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1996 Oct 15;157(8):3350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8871631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Retin Eye Res. 2015 Jan;44:99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25434765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2003 Mar;33(3):748-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12616495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ocul Immunol Inflamm. 2011 Jun;19(3):192-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21595535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2002 Dec 6;979(1-2):233-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12498253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2014 Nov 15;23(22):6081-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24957906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2014 May-Jun;152(1-2):36-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Rheumatol. 2015 Jul;27(4):349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26002026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2002 Dec;3(12):1169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12436109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 22;278(34):32275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12799365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 1989;30(1):50-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2473030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ophthalmology. 2004 May;111(5):954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15121374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Oct 14;6(10):e1001157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20976248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Ophthalmol. 2011 Aug;152(2):177-182.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21570674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Autoimmun. 2017 May;79:28-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28063628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1996 Oct 1;184(4):1585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8879234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 23;290(43):26021-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26381406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2016 Sep;77:193-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27522479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Sep 1;189(5):2383-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22837489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Feb 17;267(5200):1016-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7863326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2009 Sep;60(9):2633-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19714651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 2014 Jun;75(6):570-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Aug 1;1751(1):9-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2018 Jul;17(7):1308-1323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29632046</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000901 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000901 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29769354
   |texte=   Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29769354" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021