Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens.

Identifieur interne : 000900 ( PubMed/Corpus ); précédent : 000899; suivant : 000901

Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens.

Auteurs : Emiliya M. Storman ; Nai-Jiang Liu ; Martin W. Wessendorf ; Alan R. Gintzler

Source :

RBID : pubmed:29771302

English descriptors

Abstract

Rapid-signaling membrane estrogen receptors (mERs) and aromatase (Aro) are present throughout the central nervous system (CNS), enabling acute regulation of CNS estrogenic signaling. We previously reported that spinal membrane Aro (mAro) and mERα oligomerize (1). As their organizational relationship would likely influence functions of locally produced estrogens, we quantified the mAro and mERα that are physically associated and nonassociated in two functionally different regions of rat CNS: the spinal cord, which has predominantly neural functionalities, and the hypothalamus, which has both neural and endocrine capabilities. Quantitative immunoprecipitation (IP), coimmunoprecipitation, and Western blot analysis were used to quantify the associated and nonassociated subpopulations of mAro and mERα. Regardless of estrous-cycle stage, virtually all mAro was oligomerized with mERα in the spinal cord, whereas only ∼15% was oligomerized in the hypothalamus. The predominance of nonassociated mAro in the hypothalamus, in combination with findings that many hypothalamic Aro-immunoreactive neurons could be retrogradely labeled with peripherally injected Fluoro-Gold, suggests that a portion of hypothalamic estrogens is secreted, potentially regulating pituitary function. Moreover, circulating estrogens increased hypothalamic Aro activity (quantified by the tritiated water-release assay) in the absence of increased Aro protein, revealing nongenomic regulation of Aro activity in the mammalian CNS. The demonstrated presence of associated and nonassociated mAro and mERα subpopulations in the CNS suggests that their selective targeting could restore impaired estrogen-dependent CNS functionalities while minimizing unwanted effects. The full physiological ramifications of brain-secreted estrogens remain to be explored.

DOI: 10.1210/en.2018-00319
PubMed: 29771302

Links to Exploration step

pubmed:29771302

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens.</title>
<author>
<name sortKey="Storman, Emiliya M" sort="Storman, Emiliya M" uniqKey="Storman E" first="Emiliya M" last="Storman">Emiliya M. Storman</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Nai Jiang" sort="Liu, Nai Jiang" uniqKey="Liu N" first="Nai-Jiang" last="Liu">Nai-Jiang Liu</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wessendorf, Martin W" sort="Wessendorf, Martin W" uniqKey="Wessendorf M" first="Martin W" last="Wessendorf">Martin W. Wessendorf</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gintzler, Alan R" sort="Gintzler, Alan R" uniqKey="Gintzler A" first="Alan R" last="Gintzler">Alan R. Gintzler</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29771302</idno>
<idno type="pmid">29771302</idno>
<idno type="doi">10.1210/en.2018-00319</idno>
<idno type="wicri:Area/PubMed/Corpus">000900</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000900</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens.</title>
<author>
<name sortKey="Storman, Emiliya M" sort="Storman, Emiliya M" uniqKey="Storman E" first="Emiliya M" last="Storman">Emiliya M. Storman</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Nai Jiang" sort="Liu, Nai Jiang" uniqKey="Liu N" first="Nai-Jiang" last="Liu">Nai-Jiang Liu</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wessendorf, Martin W" sort="Wessendorf, Martin W" uniqKey="Wessendorf M" first="Martin W" last="Wessendorf">Martin W. Wessendorf</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gintzler, Alan R" sort="Gintzler, Alan R" uniqKey="Gintzler A" first="Alan R" last="Gintzler">Alan R. Gintzler</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Endocrinology</title>
<idno type="eISSN">1945-7170</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Aromatase (metabolism)</term>
<term>Brain (metabolism)</term>
<term>Central Nervous System (metabolism)</term>
<term>Estrogen Receptor alpha (metabolism)</term>
<term>Estrogens (metabolism)</term>
<term>Immunoprecipitation</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aromatase</term>
<term>Estrogen Receptor alpha</term>
<term>Estrogens</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
<term>Central Nervous System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Immunoprecipitation</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapid-signaling membrane estrogen receptors (mERs) and aromatase (Aro) are present throughout the central nervous system (CNS), enabling acute regulation of CNS estrogenic signaling. We previously reported that spinal membrane Aro (mAro) and mERα oligomerize (1). As their organizational relationship would likely influence functions of locally produced estrogens, we quantified the mAro and mERα that are physically associated and nonassociated in two functionally different regions of rat CNS: the spinal cord, which has predominantly neural functionalities, and the hypothalamus, which has both neural and endocrine capabilities. Quantitative immunoprecipitation (IP), coimmunoprecipitation, and Western blot analysis were used to quantify the associated and nonassociated subpopulations of mAro and mERα. Regardless of estrous-cycle stage, virtually all mAro was oligomerized with mERα in the spinal cord, whereas only ∼15% was oligomerized in the hypothalamus. The predominance of nonassociated mAro in the hypothalamus, in combination with findings that many hypothalamic Aro-immunoreactive neurons could be retrogradely labeled with peripherally injected Fluoro-Gold, suggests that a portion of hypothalamic estrogens is secreted, potentially regulating pituitary function. Moreover, circulating estrogens increased hypothalamic Aro activity (quantified by the tritiated water-release assay) in the absence of increased Aro protein, revealing nongenomic regulation of Aro activity in the mammalian CNS. The demonstrated presence of associated and nonassociated mAro and mERα subpopulations in the CNS suggests that their selective targeting could restore impaired estrogen-dependent CNS functionalities while minimizing unwanted effects. The full physiological ramifications of brain-secreted estrogens remain to be explored.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29771302</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1945-7170</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>159</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Endocrinology</Title>
<ISOAbbreviation>Endocrinology</ISOAbbreviation>
</Journal>
<ArticleTitle>Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens.</ArticleTitle>
<Pagination>
<MedlinePgn>2683-2697</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1210/en.2018-00319</ELocationID>
<Abstract>
<AbstractText>Rapid-signaling membrane estrogen receptors (mERs) and aromatase (Aro) are present throughout the central nervous system (CNS), enabling acute regulation of CNS estrogenic signaling. We previously reported that spinal membrane Aro (mAro) and mERα oligomerize (1). As their organizational relationship would likely influence functions of locally produced estrogens, we quantified the mAro and mERα that are physically associated and nonassociated in two functionally different regions of rat CNS: the spinal cord, which has predominantly neural functionalities, and the hypothalamus, which has both neural and endocrine capabilities. Quantitative immunoprecipitation (IP), coimmunoprecipitation, and Western blot analysis were used to quantify the associated and nonassociated subpopulations of mAro and mERα. Regardless of estrous-cycle stage, virtually all mAro was oligomerized with mERα in the spinal cord, whereas only ∼15% was oligomerized in the hypothalamus. The predominance of nonassociated mAro in the hypothalamus, in combination with findings that many hypothalamic Aro-immunoreactive neurons could be retrogradely labeled with peripherally injected Fluoro-Gold, suggests that a portion of hypothalamic estrogens is secreted, potentially regulating pituitary function. Moreover, circulating estrogens increased hypothalamic Aro activity (quantified by the tritiated water-release assay) in the absence of increased Aro protein, revealing nongenomic regulation of Aro activity in the mammalian CNS. The demonstrated presence of associated and nonassociated mAro and mERα subpopulations in the CNS suggests that their selective targeting could restore impaired estrogen-dependent CNS functionalities while minimizing unwanted effects. The full physiological ramifications of brain-secreted estrogens remain to be explored.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Storman</LastName>
<ForeName>Emiliya M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Nai-Jiang</ForeName>
<Initials>NJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wessendorf</LastName>
<ForeName>Martin W</ForeName>
<Initials>MW</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gintzler</LastName>
<ForeName>Alan R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DA043774</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Endocrinology</MedlineTA>
<NlmUniqueID>0375040</NlmUniqueID>
<ISSNLinking>0013-7227</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047628">Estrogen Receptor alpha</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004967">Estrogens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.1</RegistryNumber>
<NameOfSubstance UI="D001141">Aromatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001141" MajorTopicYN="N">Aromatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002490" MajorTopicYN="N">Central Nervous System</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047628" MajorTopicYN="N">Estrogen Receptor alpha</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004967" MajorTopicYN="N">Estrogens</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29771302</ArticleId>
<ArticleId IdType="pii">4995801</ArticleId>
<ArticleId IdType="doi">10.1210/en.2018-00319</ArticleId>
<ArticleId IdType="pmc">PMC6692873</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 1999 Jun;20(3):279-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10368772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 2000 Apr;71(4):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10773743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2000 Apr 25;162(1-2):167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2000 Jul;141(7):2472-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10875248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2000 Aug 7;423(4):552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2001 Jan;13(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2001 Dec;91(6):2785-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 2001 Nov;37(1-3):38-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11744073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2001 Dec;79(1-5):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11850231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2001 Dec;79(1-5):261-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11850233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2002 Mar 15;70(17):2047-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12148697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Oct 1;22(19):8391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2002 Nov;14(11):894-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 2002 Dec;87(12):5760-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2003 Jan;68(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2003;118(4):941-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 22;23(29):9529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2003 Dec;1007:263-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14993059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1992 Sep;131(3):1305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1505465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2004 May 24;473(2):194-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 11;307(5715):1625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2005 Jun;19(6):1606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2005 Oct 7;272(1576):2089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16191621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2006 Jan;147(1):359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Apr;2(4):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2006 May;29(5):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16580076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2006 Dec 18;1126(1):2-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16978590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Reprod Sci. 2007 Feb;14(2):101-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17636222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2007 Aug;13(4):323-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2008 May;29(2):238-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2008 Oct;73(9-10):870-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2009 Apr;150(4):1563-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19307418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2009 Oct;23(10):1634-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2009 Nov;150(11):5106-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2009 Oct;20(8):409-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 2010 Feb;204(2):105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Dec 2;29(48):15323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr J. 2010;57(2):101-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2010 Jul;30(7):2897-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20683030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2011 Feb;336(2):328-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21041644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2011 Jan;152(1):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 2011 Mar 25;54(4):830-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21145681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2011 May;23(5):424-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21366731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Aug 17;31(33):11836-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Endocrinol (Lausanne). 2011 Sep 29;2:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Endocrinol (Lausanne). 2011 Sep 29;2:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22654800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2012 Dec;37(12):2697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22903468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1990 Apr 30;514(2):327-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2357545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 30;8(4):e63199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23646196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biomed Sci. 2005 Jun;1(1):76-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23674958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2013;255:177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24452062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2014 May 16;267:122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24613724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pain. 2015 Nov;16(11):1200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Comp Endocrinol. 1988 Nov;72(2):190-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2848743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2017 Oct;158(10):1903-1914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28902684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1985 Dec;117(6):2471-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4065042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Behav. 1972 Jun;8(6):1113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5074025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1968 Nov;83(5):1101-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5685570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1984 Jan;114(1):192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6537806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 1981 Apr;24(3):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7195288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1978 Dec;103(6):2283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">748049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Neuroanat. 1995 May;8(4):267-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7669272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Bull. 1994;35(4):339-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7850484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 1993 Sep;58(3):310-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7902960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1993 Dec 15;53(24):5934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8261406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 1993 Jan;119(1):20-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8432348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1996 Jan 15;16(2):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8551343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 1996 Nov;151(2):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8958794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Toxicol. 1996 Dec;12(4-6):317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9034627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 1996 Feb;63(2):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9053779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 1997 Jul;62(4):327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9408087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 1998 Jan;19(1):1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 22;273(21):13317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1998 Sep;139(9):3976-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 1998 Oct;63(10):498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9800279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 1999 Feb;13(2):307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973260</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000900 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000900 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29771302
   |texte=   Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29771302" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021