Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat.

Identifieur interne : 000641 ( PubMed/Corpus ); précédent : 000640; suivant : 000642

Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat.

Auteurs : Arinjay Banerjee ; Darryl Falzarano ; Noreen Rapin ; Jocelyne Lew ; Vikram Misra

Source :

RBID : pubmed:30781790

English descriptors

Abstract

Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (Eptesicus fuscus) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in E. fuscus bat cells is resistant to MERS-CoV-mediated subversion.

DOI: 10.3390/v11020152
PubMed: 30781790

Links to Exploration step

pubmed:30781790

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat.</title>
<author>
<name sortKey="Banerjee, Arinjay" sort="Banerjee, Arinjay" uniqKey="Banerjee A" first="Arinjay" last="Banerjee">Arinjay Banerjee</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. banera9@mcmaster.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falzarano, Darryl" sort="Falzarano, Darryl" uniqKey="Falzarano D" first="Darryl" last="Falzarano">Darryl Falzarano</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. darryl.falzarano@usask.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rapin, Noreen" sort="Rapin, Noreen" uniqKey="Rapin N" first="Noreen" last="Rapin">Noreen Rapin</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. noreen.rapin@usask.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lew, Jocelyne" sort="Lew, Jocelyne" uniqKey="Lew J" first="Jocelyne" last="Lew">Jocelyne Lew</name>
<affiliation>
<nlm:affiliation>Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada. jocelyne.lew@usask.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Misra, Vikram" sort="Misra, Vikram" uniqKey="Misra V" first="Vikram" last="Misra">Vikram Misra</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. vikram.misra@usask.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30781790</idno>
<idno type="pmid">30781790</idno>
<idno type="doi">10.3390/v11020152</idno>
<idno type="wicri:Area/PubMed/Corpus">000641</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000641</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat.</title>
<author>
<name sortKey="Banerjee, Arinjay" sort="Banerjee, Arinjay" uniqKey="Banerjee A" first="Arinjay" last="Banerjee">Arinjay Banerjee</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. banera9@mcmaster.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falzarano, Darryl" sort="Falzarano, Darryl" uniqKey="Falzarano D" first="Darryl" last="Falzarano">Darryl Falzarano</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. darryl.falzarano@usask.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rapin, Noreen" sort="Rapin, Noreen" uniqKey="Rapin N" first="Noreen" last="Rapin">Noreen Rapin</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. noreen.rapin@usask.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lew, Jocelyne" sort="Lew, Jocelyne" uniqKey="Lew J" first="Jocelyne" last="Lew">Jocelyne Lew</name>
<affiliation>
<nlm:affiliation>Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada. jocelyne.lew@usask.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Misra, Vikram" sort="Misra, Vikram" uniqKey="Misra V" first="Vikram" last="Misra">Vikram Misra</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. vikram.misra@usask.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Viruses</title>
<idno type="eISSN">1999-4915</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chiroptera (virology)</term>
<term>Gene Knockdown Techniques</term>
<term>Gene Knockout Techniques</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Immunity, Innate</term>
<term>Interferon Regulatory Factor-3 (genetics)</term>
<term>Interferon Regulatory Factor-3 (immunology)</term>
<term>Interferon-beta (immunology)</term>
<term>Kidney (cytology)</term>
<term>Kidney (virology)</term>
<term>Middle East Respiratory Syndrome Coronavirus (immunology)</term>
<term>Middle East Respiratory Syndrome Coronavirus (pathogenicity)</term>
<term>Phylogeny</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Interferon Regulatory Factor-3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Interferon Regulatory Factor-3</term>
<term>Interferon-beta</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Kidney</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Chiroptera</term>
<term>Kidney</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Gene Knockdown Techniques</term>
<term>Gene Knockout Techniques</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Immunity, Innate</term>
<term>Phylogeny</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (
<i>Eptesicus fuscus</i>
) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in
<i>E. fuscus</i>
bat cells is resistant to MERS-CoV-mediated subversion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30781790</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1999-4915</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Viruses</Title>
<ISOAbbreviation>Viruses</ISOAbbreviation>
</Journal>
<ArticleTitle>Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E152</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/v11020152</ELocationID>
<Abstract>
<AbstractText>Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (
<i>Eptesicus fuscus</i>
) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in
<i>E. fuscus</i>
bat cells is resistant to MERS-CoV-mediated subversion.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Banerjee</LastName>
<ForeName>Arinjay</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-2821-8357</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. banera9@mcmaster.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Falzarano</LastName>
<ForeName>Darryl</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. darryl.falzarano@usask.ca.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada. darryl.falzarano@usask.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rapin</LastName>
<ForeName>Noreen</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. noreen.rapin@usask.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lew</LastName>
<ForeName>Jocelyne</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada. jocelyne.lew@usask.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Misra</LastName>
<ForeName>Vikram</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0001-6818-7156</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. vikram.misra@usask.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Viruses</MedlineTA>
<NlmUniqueID>101509722</NlmUniqueID>
<ISSNLinking>1999-4915</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494232">IRF3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050838">Interferon Regulatory Factor-3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>77238-31-4</RegistryNumber>
<NameOfSubstance UI="D016899">Interferon-beta</NameOfSubstance>
</Chemical>
</ChemicalList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002685" MajorTopicYN="N">Chiroptera</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="Y">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050838" MajorTopicYN="N">Interferon Regulatory Factor-3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016899" MajorTopicYN="N">Interferon-beta</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007668" MajorTopicYN="N">Kidney</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">IRF3</Keyword>
<Keyword MajorTopicYN="Y">MERS-CoV</Keyword>
<Keyword MajorTopicYN="Y">bat</Keyword>
<Keyword MajorTopicYN="Y">interferon</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30781790</ArticleId>
<ArticleId IdType="pii">v11020152</ArticleId>
<ArticleId IdType="doi">10.3390/v11020152</ArticleId>
<ArticleId IdType="pmc">PMC6410008</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Aug;88(16):8936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24872591</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2014 Dec 16;42(22):e168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25300484</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(11):e28131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2014 Oct;25(5):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25081316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mem Inst Oswaldo Cruz. 2015 Feb;110(1):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25742261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2011 Dec;1(6):519-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10636-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367631</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Jan 5;276(1):355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035028</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25093995</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2018 Jan 1;200(1):209-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29180486</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Cell. 2013 Dec;4(12):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Mar 14;278(11):9441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 May;83(9):4013-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2018 Apr;556(7700):255-258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29618817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2015 Aug 18;12:127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2016 Apr 20;5:e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27094905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2018;100:163-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29551135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2006 Jun;7(6):598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16699525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Genes. 2011 Feb;42(1):37-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20976535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2017 Nov 30;13(11):e1006698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29190287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>One Health. 2017 Mar 10;3:41-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28616502</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2017 Dec 19;14(1):239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29258555</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2010 Jul;91(Pt 7):1698-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237226</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Apr 26;7(1):1193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Rev. 2006 Jul;19(3):531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847084</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):77-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Anim Sci. 2015 Nov;93(11):5111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26641031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Immunol Immunopathol. 2008 Jul 15;124(1-2):169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2016 Nov;237:166-173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27639955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2017 Apr 4;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28377531</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2016 Feb;97(2):344-355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26602089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Cycle. 2014;13(9):1400-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24626186</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Oct;19(10):1697-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050621</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2017 Jun 12;546(7658):340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28617480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2013 Oct 15;4(5):e00737-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2018 Aug 14;24(7):1730-1737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30110630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864603</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 May 22;7(1):2232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28533548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Immunol. 2016 Nov 11;7:498</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27891131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Public Health. 2018 Apr 09;6:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29686984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2018 Dec 10;7(1):209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30531999</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Exp Mol Med. 2015 Mar 06;47:e144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Nov 12;9(11):e112285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25391018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2007 Apr;170(4):1136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Comp Oncol. 2013 Jun;11(2):140-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22243984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2014 Jan;14(1):36-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362405</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2017 Sep;98(9):2297-2309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28840816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1993 May;10(3):512-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2014 Jan;101:45-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24184128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Feb 22;6:21878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26899616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Vet Res. 2006 Apr;67(4):627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16579755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2015 Dec 22;12:218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26690369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2018 Jun 13;92(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29669833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2018 Mar 15;248:5-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29454637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2006 Feb;7(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16424890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(7):e22488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811620</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2013 Dec;94(Pt 12):2679-2690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24077366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Nov 19;9(11):e112060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409519</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):4866-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>F1000Res. 2017 Sep 1;6:1628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29026532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000641 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000641 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30781790
   |texte=   Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30781790" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021