Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity.

Identifieur interne : 000635 ( PubMed/Corpus ); précédent : 000634; suivant : 000636

Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity.

Auteurs : Richa Tambi ; Gentaro Morimoto ; Satoshi Kosuda ; Makoto Taiji ; Yutaka Kuroda

Source :

RBID : pubmed:30792475

Abstract

In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence ('NFGAILSS') derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN's special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18-26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.

DOI: 10.1038/s41598-018-38401-w
PubMed: 30792475

Links to Exploration step

pubmed:30792475

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity.</title>
<author>
<name sortKey="Tambi, Richa" sort="Tambi, Richa" uniqKey="Tambi R" first="Richa" last="Tambi">Richa Tambi</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morimoto, Gentaro" sort="Morimoto, Gentaro" uniqKey="Morimoto G" first="Gentaro" last="Morimoto">Gentaro Morimoto</name>
<affiliation>
<nlm:affiliation>Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kosuda, Satoshi" sort="Kosuda, Satoshi" uniqKey="Kosuda S" first="Satoshi" last="Kosuda">Satoshi Kosuda</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taiji, Makoto" sort="Taiji, Makoto" uniqKey="Taiji M" first="Makoto" last="Taiji">Makoto Taiji</name>
<affiliation>
<nlm:affiliation>Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuroda, Yutaka" sort="Kuroda, Yutaka" uniqKey="Kuroda Y" first="Yutaka" last="Kuroda">Yutaka Kuroda</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan. ykuroda@cc.tuat.ac.jp.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30792475</idno>
<idno type="pmid">30792475</idno>
<idno type="doi">10.1038/s41598-018-38401-w</idno>
<idno type="wicri:Area/PubMed/Corpus">000635</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000635</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity.</title>
<author>
<name sortKey="Tambi, Richa" sort="Tambi, Richa" uniqKey="Tambi R" first="Richa" last="Tambi">Richa Tambi</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morimoto, Gentaro" sort="Morimoto, Gentaro" uniqKey="Morimoto G" first="Gentaro" last="Morimoto">Gentaro Morimoto</name>
<affiliation>
<nlm:affiliation>Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kosuda, Satoshi" sort="Kosuda, Satoshi" uniqKey="Kosuda S" first="Satoshi" last="Kosuda">Satoshi Kosuda</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taiji, Makoto" sort="Taiji, Makoto" uniqKey="Taiji M" first="Makoto" last="Taiji">Makoto Taiji</name>
<affiliation>
<nlm:affiliation>Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuroda, Yutaka" sort="Kuroda, Yutaka" uniqKey="Kuroda Y" first="Yutaka" last="Kuroda">Yutaka Kuroda</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan. ykuroda@cc.tuat.ac.jp.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence ('NFGAILSS') derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN's special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18-26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">30792475</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity.</ArticleTitle>
<Pagination>
<MedlinePgn>2530</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-38401-w</ELocationID>
<Abstract>
<AbstractText>In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence ('NFGAILSS') derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN's special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18-26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tambi</LastName>
<ForeName>Richa</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, UAE.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morimoto</LastName>
<ForeName>Gentaro</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kosuda</LastName>
<ForeName>Satoshi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taiji</LastName>
<ForeName>Makoto</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuroda</LastName>
<ForeName>Yutaka</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo, 184-8588, Japan. ykuroda@cc.tuat.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30792475</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-38401-w</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-38401-w</ArticleId>
<ArticleId IdType="pmc">PMC6384915</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Jan 28;295(4):1055-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):34156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11445568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Nov 29;1537(3):179-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11731221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2003 Jan 15;24(1):21-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12483672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2003 Nov;81(11):678-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12942175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2004 Mar;12(3):439-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Jul 1;121(1):415-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 May 15;59(3):519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Oct 5;127(39):13530-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16190716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1668-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2007 Jan;85(1):12-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16948129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2006;413:217-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Mar 20;46(11):3255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17311418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Sep 19;129(37):11300-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Nov 30;374(3):806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17950314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Jan 15;30(1):110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18524021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Nov 12;130(45):14990-5001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2008;14(30):3205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Feb 27;386(3):878-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19133274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2009;38:125-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2009 Jun 17;96(12):5020-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19527662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2012 Apr;80(4):1053-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Mar 16;148(6):1188-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 9;51(40):7974-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2013 Feb;23(1):82-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23266002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Rev. 2012 Sep;4(3):205-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23495357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Oct;1834(10):2107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Med (Zagreb). 2013;23(3):266-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24266296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Jun 25;136(25):8947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Mar 12;589(6):672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25647034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phys Chem. 2015 Apr;66:643-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Indian Acad Neurol. 2015 Apr-Jun;18(2):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 29;10(5):e0127865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26024352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucl Magn Reson Spectrosc. 2015 Aug;88-89:86-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26282197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 28;6:19479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26817663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2016 Oct;590(20):3501-3509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27685427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 09;7:40065</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28067252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Sep 1;292(35):14587-14602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28684415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Proteins Proteom. 2018 Feb;1866(2):366-372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28951312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Rev. 2018 Apr;10(2):473-480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29302914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1983 Dec;22(12):2577-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6667333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 May 20;238(5):777-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8182748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Oct 31;273(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9356260</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000635 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000635 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30792475
   |texte=   Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30792475" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021