Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Building blocks for recognition-encoded oligoesters that form H-bonded duplexes.

Identifieur interne : 000609 ( PubMed/Corpus ); précédent : 000608; suivant : 000610

Building blocks for recognition-encoded oligoesters that form H-bonded duplexes.

Auteurs : Filip T. Szczypi Ski ; Christopher A. Hunter

Source :

RBID : pubmed:30881672

Abstract

Competition from intramolecular folding is a major challenge in the design of synthetic oligomers that form intermolecular duplexes in a sequence-selective manner. One strategy is to use very rigid backbones that prevent folding, but this design can prejudice duplex formation if the geometry is not exactly right. The alternative approach found in nucleic acids is to use bases (or recognition units) that have different dimensions. A long-short base-pairing scheme makes folding geometrically difficult and is compatible with the flexible backbones that are required to guarantee duplex formation. A monomer building block equipped with a long hydrogen bond donor (phenol, D) recognition unit and a monomer building block equipped with a short hydrogen bond acceptor (phosphine oxide, A) recognition unit were prepared with differentially protected alcohol and carboxylic acid groups. These compounds were used to synthesise the homo and hetero-sequence 2-mers AA, DD and AD. 19F and 31P NMR experiments were used to characterize the assembly properties of these compounds in toluene solution. AA and DD form a stable doubly-hydrogen-bonded duplex with an effective molarity of 20 mM for formation of the second intramolecular hydrogen bond. AD forms a duplex of similar stability. There is no evidence of intramolecular folding in the monomeric state of this compound, which shows that the long-short base-pairing scheme is effective. The ester coupling chemistry used here is an attractive method for the synthesis of long oligomers, and the properties of the 2-mers indicate that this molecular architecture should give longer mixed sequence oligomers that show high fidelity sequence-selective duplex formation.

DOI: 10.1039/c8sc04896g
PubMed: 30881672

Links to Exploration step

pubmed:30881672

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Building blocks for recognition-encoded oligoesters that form H-bonded duplexes.</title>
<author>
<name sortKey="Szczypi Ski, Filip T" sort="Szczypi Ski, Filip T" uniqKey="Szczypi Ski F" first="Filip T" last="Szczypi Ski">Filip T. Szczypi Ski</name>
<affiliation>
<nlm:affiliation>Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email: herchelsmith.orgchem@ch.cam.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunter, Christopher A" sort="Hunter, Christopher A" uniqKey="Hunter C" first="Christopher A" last="Hunter">Christopher A. Hunter</name>
<affiliation>
<nlm:affiliation>Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email: herchelsmith.orgchem@ch.cam.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30881672</idno>
<idno type="pmid">30881672</idno>
<idno type="doi">10.1039/c8sc04896g</idno>
<idno type="wicri:Area/PubMed/Corpus">000609</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000609</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Building blocks for recognition-encoded oligoesters that form H-bonded duplexes.</title>
<author>
<name sortKey="Szczypi Ski, Filip T" sort="Szczypi Ski, Filip T" uniqKey="Szczypi Ski F" first="Filip T" last="Szczypi Ski">Filip T. Szczypi Ski</name>
<affiliation>
<nlm:affiliation>Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email: herchelsmith.orgchem@ch.cam.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunter, Christopher A" sort="Hunter, Christopher A" uniqKey="Hunter C" first="Christopher A" last="Hunter">Christopher A. Hunter</name>
<affiliation>
<nlm:affiliation>Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email: herchelsmith.orgchem@ch.cam.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemical science</title>
<idno type="ISSN">2041-6520</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Competition from intramolecular folding is a major challenge in the design of synthetic oligomers that form intermolecular duplexes in a sequence-selective manner. One strategy is to use very rigid backbones that prevent folding, but this design can prejudice duplex formation if the geometry is not exactly right. The alternative approach found in nucleic acids is to use bases (or recognition units) that have different dimensions. A long-short base-pairing scheme makes folding geometrically difficult and is compatible with the flexible backbones that are required to guarantee duplex formation. A monomer building block equipped with a long hydrogen bond donor (phenol,
<b>D</b>
) recognition unit and a monomer building block equipped with a short hydrogen bond acceptor (phosphine oxide,
<b>A</b>
) recognition unit were prepared with differentially protected alcohol and carboxylic acid groups. These compounds were used to synthesise the homo and hetero-sequence 2-mers
<b>AA</b>
,
<b>DD</b>
and
<b>AD</b>
.
<sup>19</sup>
F and
<sup>31</sup>
P NMR experiments were used to characterize the assembly properties of these compounds in toluene solution.
<b>AA</b>
and
<b>DD</b>
form a stable doubly-hydrogen-bonded duplex with an effective molarity of 20 mM for formation of the second intramolecular hydrogen bond.
<b>AD</b>
forms a duplex of similar stability. There is no evidence of intramolecular folding in the monomeric state of this compound, which shows that the long-short base-pairing scheme is effective. The ester coupling chemistry used here is an attractive method for the synthesis of long oligomers, and the properties of the 2-mers indicate that this molecular architecture should give longer mixed sequence oligomers that show high fidelity sequence-selective duplex formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30881672</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2041-6520</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Chemical science</Title>
<ISOAbbreviation>Chem Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Building blocks for recognition-encoded oligoesters that form H-bonded duplexes.</ArticleTitle>
<Pagination>
<MedlinePgn>2444-2451</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c8sc04896g</ELocationID>
<Abstract>
<AbstractText>Competition from intramolecular folding is a major challenge in the design of synthetic oligomers that form intermolecular duplexes in a sequence-selective manner. One strategy is to use very rigid backbones that prevent folding, but this design can prejudice duplex formation if the geometry is not exactly right. The alternative approach found in nucleic acids is to use bases (or recognition units) that have different dimensions. A long-short base-pairing scheme makes folding geometrically difficult and is compatible with the flexible backbones that are required to guarantee duplex formation. A monomer building block equipped with a long hydrogen bond donor (phenol,
<b>D</b>
) recognition unit and a monomer building block equipped with a short hydrogen bond acceptor (phosphine oxide,
<b>A</b>
) recognition unit were prepared with differentially protected alcohol and carboxylic acid groups. These compounds were used to synthesise the homo and hetero-sequence 2-mers
<b>AA</b>
,
<b>DD</b>
and
<b>AD</b>
.
<sup>19</sup>
F and
<sup>31</sup>
P NMR experiments were used to characterize the assembly properties of these compounds in toluene solution.
<b>AA</b>
and
<b>DD</b>
form a stable doubly-hydrogen-bonded duplex with an effective molarity of 20 mM for formation of the second intramolecular hydrogen bond.
<b>AD</b>
forms a duplex of similar stability. There is no evidence of intramolecular folding in the monomeric state of this compound, which shows that the long-short base-pairing scheme is effective. The ester coupling chemistry used here is an attractive method for the synthesis of long oligomers, and the properties of the 2-mers indicate that this molecular architecture should give longer mixed sequence oligomers that show high fidelity sequence-selective duplex formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Szczypiński</LastName>
<ForeName>Filip T</ForeName>
<Initials>FT</Initials>
<Identifier Source="ORCID">0000-0003-3174-8532</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email: herchelsmith.orgchem@ch.cam.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hunter</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
<Identifier Source="ORCID">0000-0002-5182-1859</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email: herchelsmith.orgchem@ch.cam.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>320539</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chem Sci</MedlineTA>
<NlmUniqueID>101545951</NlmUniqueID>
<ISSNLinking>2041-6520</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30881672</ArticleId>
<ArticleId IdType="doi">10.1039/c8sc04896g</ArticleId>
<ArticleId IdType="pii">c8sc04896g</ArticleId>
<ArticleId IdType="pmc">PMC6385898</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Nov 17;290(5495):1347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11082060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):387-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5394-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 1999 Oct 29;64(22):8063-8075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11674717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1953 Apr 25;171(4356):737-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13054692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 31;302(5646):868-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Feb 16;127(6):1719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Mar 30;127(12):4174-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15783191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2005 Jun 20;44(25):3867-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15900525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jan 4;343(6253):33-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1688644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2007 Jun 22;72(13):4936-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 3;454(7200):122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18528332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Lett. 2008 Sep 4;10(17):3729-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18656947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2008 Sep 19;73(18):7137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18729324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Oct 22;130(42):14008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(25):4524-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(41):7488-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19746372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2009 Dec;13(5-6):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19879178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 1994 Dec 1;59(24):7238-7242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20882116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 May 11;133(18):6910-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21488683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Apr 20;336(6079):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2013 May 27;19(22):6990-7006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2013 Nov 7;15(41):18262-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Feb 19;518(7539):427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2015 Apr;32(4):605-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25572105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jun 3;137(21):6734-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25966323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2017 Feb;117:66-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2017 Jan 1;8(1):206-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28451167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 May 17;139(19):6654-6662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28470070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Sep 13;139(36):12655-12663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28857551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 Mar 1;7(3):1760-1767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28936325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2018 Jun 6;16(22):4183-4190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 Jan 1;7(1):94-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29861969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2018 Sep 12;140(36):11526-11536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30179469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2018 Sep 4;10(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30181195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 1997 Dec;27(5-6):535-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9394470</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000609 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000609 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30881672
   |texte=   Building blocks for recognition-encoded oligoesters that form H-bonded duplexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30881672" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021