Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Streaming histogram sketching for rapid microbiome analytics.

Identifieur interne : 000610 ( PubMed/Corpus ); précédent : 000609; suivant : 000611

Streaming histogram sketching for rapid microbiome analytics.

Auteurs : Will Pm Rowe ; Anna Paola Carrieri ; Cristina Alcon-Giner ; Shabhonam Caim ; Alex Shaw ; Kathleen Sim ; J Simon Kroll ; Lindsay J. Hall ; Edward O. Pyzer-Knapp ; Martyn D. Winn

Source :

RBID : pubmed:30878035

English descriptors

Abstract

The growth in publically available microbiome data in recent years has yielded an invaluable resource for genomic research, allowing for the design of new studies, augmentation of novel datasets and reanalysis of published works. This vast amount of microbiome data, as well as the widespread proliferation of microbiome research and the looming era of clinical metagenomics, means there is an urgent need to develop analytics that can process huge amounts of data in a short amount of time. To address this need, we propose a new method for tyrhe compact representation of microbiome sequencing data using similarity-preserving sketches of streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid microbiome catalogue searching and classification of microbiome samples in near real time.

DOI: 10.1186/s40168-019-0653-2
PubMed: 30878035

Links to Exploration step

pubmed:30878035

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Streaming histogram sketching for rapid microbiome analytics.</title>
<author>
<name sortKey="Rowe, Will Pm" sort="Rowe, Will Pm" uniqKey="Rowe W" first="Will Pm" last="Rowe">Will Pm Rowe</name>
<affiliation>
<nlm:affiliation>Scientific Computing Department, STFC Daresbury Laboratory, Warrington, UK. will.rowe@stfc.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carrieri, Anna Paola" sort="Carrieri, Anna Paola" uniqKey="Carrieri A" first="Anna Paola" last="Carrieri">Anna Paola Carrieri</name>
<affiliation>
<nlm:affiliation>IBM Research, The Hartree Centre, Warrington, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alcon Giner, Cristina" sort="Alcon Giner, Cristina" uniqKey="Alcon Giner C" first="Cristina" last="Alcon-Giner">Cristina Alcon-Giner</name>
<affiliation>
<nlm:affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caim, Shabhonam" sort="Caim, Shabhonam" uniqKey="Caim S" first="Shabhonam" last="Caim">Shabhonam Caim</name>
<affiliation>
<nlm:affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Alex" sort="Shaw, Alex" uniqKey="Shaw A" first="Alex" last="Shaw">Alex Shaw</name>
<affiliation>
<nlm:affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sim, Kathleen" sort="Sim, Kathleen" uniqKey="Sim K" first="Kathleen" last="Sim">Kathleen Sim</name>
<affiliation>
<nlm:affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kroll, J Simon" sort="Kroll, J Simon" uniqKey="Kroll J" first="J Simon" last="Kroll">J Simon Kroll</name>
<affiliation>
<nlm:affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hall, Lindsay J" sort="Hall, Lindsay J" uniqKey="Hall L" first="Lindsay J" last="Hall">Lindsay J. Hall</name>
<affiliation>
<nlm:affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK. Lindsay.Hall@quadram.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pyzer Knapp, Edward O" sort="Pyzer Knapp, Edward O" uniqKey="Pyzer Knapp E" first="Edward O" last="Pyzer-Knapp">Edward O. Pyzer-Knapp</name>
<affiliation>
<nlm:affiliation>IBM Research, The Hartree Centre, Warrington, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Winn, Martyn D" sort="Winn, Martyn D" uniqKey="Winn M" first="Martyn D" last="Winn">Martyn D. Winn</name>
<affiliation>
<nlm:affiliation>Scientific Computing Department, STFC Daresbury Laboratory, Warrington, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30878035</idno>
<idno type="pmid">30878035</idno>
<idno type="doi">10.1186/s40168-019-0653-2</idno>
<idno type="wicri:Area/PubMed/Corpus">000610</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000610</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Streaming histogram sketching for rapid microbiome analytics.</title>
<author>
<name sortKey="Rowe, Will Pm" sort="Rowe, Will Pm" uniqKey="Rowe W" first="Will Pm" last="Rowe">Will Pm Rowe</name>
<affiliation>
<nlm:affiliation>Scientific Computing Department, STFC Daresbury Laboratory, Warrington, UK. will.rowe@stfc.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carrieri, Anna Paola" sort="Carrieri, Anna Paola" uniqKey="Carrieri A" first="Anna Paola" last="Carrieri">Anna Paola Carrieri</name>
<affiliation>
<nlm:affiliation>IBM Research, The Hartree Centre, Warrington, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alcon Giner, Cristina" sort="Alcon Giner, Cristina" uniqKey="Alcon Giner C" first="Cristina" last="Alcon-Giner">Cristina Alcon-Giner</name>
<affiliation>
<nlm:affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caim, Shabhonam" sort="Caim, Shabhonam" uniqKey="Caim S" first="Shabhonam" last="Caim">Shabhonam Caim</name>
<affiliation>
<nlm:affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Alex" sort="Shaw, Alex" uniqKey="Shaw A" first="Alex" last="Shaw">Alex Shaw</name>
<affiliation>
<nlm:affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sim, Kathleen" sort="Sim, Kathleen" uniqKey="Sim K" first="Kathleen" last="Sim">Kathleen Sim</name>
<affiliation>
<nlm:affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kroll, J Simon" sort="Kroll, J Simon" uniqKey="Kroll J" first="J Simon" last="Kroll">J Simon Kroll</name>
<affiliation>
<nlm:affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hall, Lindsay J" sort="Hall, Lindsay J" uniqKey="Hall L" first="Lindsay J" last="Hall">Lindsay J. Hall</name>
<affiliation>
<nlm:affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK. Lindsay.Hall@quadram.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pyzer Knapp, Edward O" sort="Pyzer Knapp, Edward O" uniqKey="Pyzer Knapp E" first="Edward O" last="Pyzer-Knapp">Edward O. Pyzer-Knapp</name>
<affiliation>
<nlm:affiliation>IBM Research, The Hartree Centre, Warrington, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Winn, Martyn D" sort="Winn, Martyn D" uniqKey="Winn M" first="Martyn D" last="Winn">Martyn D. Winn</name>
<affiliation>
<nlm:affiliation>Scientific Computing Department, STFC Daresbury Laboratory, Warrington, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (therapeutic use)</term>
<term>Bacteria (classification)</term>
<term>Bacterial Infections (drug therapy)</term>
<term>Cohort Studies</term>
<term>Gastrointestinal Microbiome</term>
<term>Humans</term>
<term>Infant, Newborn</term>
<term>Infant, Premature</term>
<term>Machine Learning</term>
<term>Metagenomics (methods)</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Bacterial Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Metagenomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cohort Studies</term>
<term>Gastrointestinal Microbiome</term>
<term>Humans</term>
<term>Infant, Newborn</term>
<term>Infant, Premature</term>
<term>Machine Learning</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth in publically available microbiome data in recent years has yielded an invaluable resource for genomic research, allowing for the design of new studies, augmentation of novel datasets and reanalysis of published works. This vast amount of microbiome data, as well as the widespread proliferation of microbiome research and the looming era of clinical metagenomics, means there is an urgent need to develop analytics that can process huge amounts of data in a short amount of time. To address this need, we propose a new method for tyrhe compact representation of microbiome sequencing data using similarity-preserving sketches of streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid microbiome catalogue searching and classification of microbiome samples in near real time.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30878035</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>Streaming histogram sketching for rapid microbiome analytics.</ArticleTitle>
<Pagination>
<MedlinePgn>40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-019-0653-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The growth in publically available microbiome data in recent years has yielded an invaluable resource for genomic research, allowing for the design of new studies, augmentation of novel datasets and reanalysis of published works. This vast amount of microbiome data, as well as the widespread proliferation of microbiome research and the looming era of clinical metagenomics, means there is an urgent need to develop analytics that can process huge amounts of data in a short amount of time. To address this need, we propose a new method for tyrhe compact representation of microbiome sequencing data using similarity-preserving sketches of streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid microbiome catalogue searching and classification of microbiome samples in near real time.</AbstractText>
<AbstractText Label="RESULTS">We apply streaming histogram sketching to microbiome samples as a form of dimensionality reduction, creating a compressed 'histosketch' that can efficiently represent microbiome k-mer spectra. Using public microbiome datasets, we show that histosketches can be clustered by sample type using the pairwise Jaccard similarity estimation, consequently allowing for rapid microbiome similarity searches via a locality sensitive hashing indexing scheme. Furthermore, we use a 'real life' example to show that histosketches can train machine learning classifiers to accurately label microbiome samples. Specifically, using a collection of 108 novel microbiome samples from a cohort of premature neonates, we trained and tested a random forest classifier that could accurately predict whether the neonate had received antibiotic treatment (97% accuracy, 96% precision) and could subsequently be used to classify microbiome data streams in less than 3 s.</AbstractText>
<AbstractText Label="CONCLUSIONS">Our method offers a new approach to rapidly process microbiome data streams, allowing samples to be rapidly clustered, indexed and classified. We also provide our implementation, Histosketching Using Little K-mers (HULK), which can histosketch a typical 2 GB microbiome in 50 s on a standard laptop using four cores, with the sketch occupying 3000 bytes of disk space. ( https://github.com/will-rowe/hulk ).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rowe</LastName>
<ForeName>Will Pm</ForeName>
<Initials>WP</Initials>
<Identifier Source="ORCID">0000-0003-0384-4463</Identifier>
<AffiliationInfo>
<Affiliation>Scientific Computing Department, STFC Daresbury Laboratory, Warrington, UK. will.rowe@stfc.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carrieri</LastName>
<ForeName>Anna Paola</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>IBM Research, The Hartree Centre, Warrington, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alcon-Giner</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caim</LastName>
<ForeName>Shabhonam</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shaw</LastName>
<ForeName>Alex</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sim</LastName>
<ForeName>Kathleen</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kroll</LastName>
<ForeName>J Simon</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Section of Paediatrics, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>Lindsay J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Quadram Institute Bioscience, Norwich Research Park, Norwich, UK. Lindsay.Hall@quadram.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pyzer-Knapp</LastName>
<ForeName>Edward O</ForeName>
<Initials>EO</Initials>
<AffiliationInfo>
<Affiliation>IBM Research, The Hartree Centre, Warrington, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Winn</LastName>
<ForeName>Martyn D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Scientific Computing Department, STFC Daresbury Laboratory, Warrington, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BBS/E/F/00044409</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/M011216/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/J004529/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BBS/E/F/000PR10356</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BBS/E/F/000PR10353</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>100/974/C/13/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/R012490/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069196" MajorTopicYN="Y">Gastrointestinal Microbiome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007231" MajorTopicYN="N">Infant, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007234" MajorTopicYN="N">Infant, Premature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069550" MajorTopicYN="N">Machine Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056186" MajorTopicYN="N">Metagenomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30878035</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-019-0653-2</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-019-0653-2</ArticleId>
<ArticleId IdType="pmc">PMC6420756</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Jun 13;486(7402):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2017 Nov 23;551(7681):457-463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29088705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2007 Mar;5(3):e77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2014 Sep 1;30(17):2471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2019 Jan 15;35(2):219-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30010790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2016 Jan 16;17:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26774270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2015 Jun;16(6):321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948244</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Med. 2015 Sep 29;7:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26416663</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Immunol. 2016 Feb 03;7:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26870044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2018 Jul;15(7):475-476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29967506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2015 Feb 1;60(3):389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25344536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2016 Jun 20;17(1):132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27323842</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Nov;14(11):1063-1071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28967888</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Jul 25;9(7):e101271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25062443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbiome. 2018 Apr 19;6(1):72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29669589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Comput Struct Biotechnol J. 2018 Feb 27;16:108-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30026887</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2017 Nov 2;18(1):841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29096601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2014;15(12):555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Jul 13;10(7):e0132923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26167683</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(12):e1002808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300406</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2018 Nov 1;34(21):3601-3608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29762644</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000610 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000610 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30878035
   |texte=   Streaming histogram sketching for rapid microbiome analytics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30878035" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021