Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.

Identifieur interne : 000495 ( PubMed/Corpus ); précédent : 000494; suivant : 000496

Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.

Auteurs : Akio Miyao ; Jianyu Song Kiyomiya ; Keiko Iida ; Koji Doi ; Hiroshi Yasue

Source :

RBID : pubmed:31253084

English descriptors

Abstract

Accurate detection of polymorphisms with a next generation sequencer data is an important element of current genetic analysis. However, there is still no detection pipeline that is completely reliable.

DOI: 10.1186/s12859-019-2955-6
PubMed: 31253084

Links to Exploration step

pubmed:31253084

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.</title>
<author>
<name sortKey="Miyao, Akio" sort="Miyao, Akio" uniqKey="Miyao A" first="Akio" last="Miyao">Akio Miyao</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan. miyao@affrc.go.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiyomiya, Jianyu Song" sort="Kiyomiya, Jianyu Song" uniqKey="Kiyomiya J" first="Jianyu Song" last="Kiyomiya">Jianyu Song Kiyomiya</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iida, Keiko" sort="Iida, Keiko" uniqKey="Iida K" first="Keiko" last="Iida">Keiko Iida</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doi, Koji" sort="Doi, Koji" uniqKey="Doi K" first="Koji" last="Doi">Koji Doi</name>
<affiliation>
<nlm:affiliation>Tsukuba Gene Technology Laboratories Inc, 6-320, Arakawaoki, Tsuchiura, Ibaraki, 300-0873, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yasue, Hiroshi" sort="Yasue, Hiroshi" uniqKey="Yasue H" first="Hiroshi" last="Yasue">Hiroshi Yasue</name>
<affiliation>
<nlm:affiliation>Tsukuba Gene Technology Laboratories Inc, 6-320, Arakawaoki, Tsuchiura, Ibaraki, 300-0873, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31253084</idno>
<idno type="pmid">31253084</idno>
<idno type="doi">10.1186/s12859-019-2955-6</idno>
<idno type="wicri:Area/PubMed/Corpus">000495</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000495</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.</title>
<author>
<name sortKey="Miyao, Akio" sort="Miyao, Akio" uniqKey="Miyao A" first="Akio" last="Miyao">Akio Miyao</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan. miyao@affrc.go.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiyomiya, Jianyu Song" sort="Kiyomiya, Jianyu Song" uniqKey="Kiyomiya J" first="Jianyu Song" last="Kiyomiya">Jianyu Song Kiyomiya</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iida, Keiko" sort="Iida, Keiko" uniqKey="Iida K" first="Keiko" last="Iida">Keiko Iida</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doi, Koji" sort="Doi, Koji" uniqKey="Doi K" first="Koji" last="Doi">Koji Doi</name>
<affiliation>
<nlm:affiliation>Tsukuba Gene Technology Laboratories Inc, 6-320, Arakawaoki, Tsuchiura, Ibaraki, 300-0873, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yasue, Hiroshi" sort="Yasue, Hiroshi" uniqKey="Yasue H" first="Hiroshi" last="Yasue">Hiroshi Yasue</name>
<affiliation>
<nlm:affiliation>Tsukuba Gene Technology Laboratories Inc, 6-320, Arakawaoki, Tsuchiura, Ibaraki, 300-0873, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (methods)</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accurate detection of polymorphisms with a next generation sequencer data is an important element of current genetic analysis. However, there is still no detection pipeline that is completely reliable.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31253084</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jun</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.</ArticleTitle>
<Pagination>
<MedlinePgn>362</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12859-019-2955-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Accurate detection of polymorphisms with a next generation sequencer data is an important element of current genetic analysis. However, there is still no detection pipeline that is completely reliable.</AbstractText>
<AbstractText Label="RESULT" NlmCategory="RESULTS">We demonstrate two new detection methods of polymorphisms focusing on the Polymorphic Edge (PED). In the matching between two homologous sequences, the first mismatched base to appear is the SNP, or the edge of the structural variation. The first method is based on k-mers from short reads and detects polymorphic edges with k-mers for which there is no match between target and control, making it possible to detect SNPs by direct comparison of short-reads in two datasets (target and control) without a reference genome sequence. The second method is based on bidirectional alignment to detect polymorphic edges, not only SNPs but also insertions, deletions, inversions and translocations. Using these two methods, we succeed in making a high-quality comparison map between rice cultivars showing good match to the theoretical value of introgression, and in detecting specific large deletions across cultivars.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Using Polymorphic Edge Detection (PED), the k-mer method is able to detect SNPs by direct comparison of short-reads in two datasets without genomic alignment step, and the bidirectional alignment method is able to detect SNPs and structural variations from even single-end short-reads. The PED is an efficient tool to obtain accurate data for both SNPs and structural variations.</AbstractText>
<AbstractText Label="AVAILABILITY" NlmCategory="BACKGROUND">The PED software is available at: https://github.com/akiomiyao/ped .</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miyao</LastName>
<ForeName>Akio</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2822-2866</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan. miyao@affrc.go.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kiyomiya</LastName>
<ForeName>Jianyu Song</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iida</LastName>
<ForeName>Keiko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doi</LastName>
<ForeName>Koji</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Tsukuba Gene Technology Laboratories Inc, 6-320, Arakawaoki, Tsuchiura, Ibaraki, 300-0873, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yasue</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Tsukuba Gene Technology Laboratories Inc, 6-320, Arakawaoki, Tsuchiura, Ibaraki, 300-0873, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="Y">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Indel</Keyword>
<Keyword MajorTopicYN="N">Mutation</Keyword>
<Keyword MajorTopicYN="N">NGS</Keyword>
<Keyword MajorTopicYN="N">Polymorphism</Keyword>
<Keyword MajorTopicYN="N">SV</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31253084</ArticleId>
<ArticleId IdType="doi">10.1186/s12859-019-2955-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12859-019-2955-6</ArticleId>
<ArticleId IdType="pmc">PMC6599308</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jul 25;12:375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21787423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Mar;32(3):246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Genet. 2016 Feb;57(1):71-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26055432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Data. 2016 Feb 16;3:160010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26882539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2016 Aug;48(8):927-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27322545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Jan;27(1):157-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Mar;48(3):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Mar 25;147(1):195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7265238</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31253084
   |texte=   Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31253084" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021