Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants.

Identifieur interne : 000198 ( PubMed/Corpus ); précédent : 000197; suivant : 000199

The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants.

Auteurs : S Nia Garcia ; Jonathan F. Wendel ; Natalia Borowska-Zuchowska ; Malika Aïnouche ; Alena Kuderova ; Ales Kovarik

Source :

RBID : pubmed:32117380

Abstract

Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups.

DOI: 10.3389/fpls.2020.00041
PubMed: 32117380

Links to Exploration step

pubmed:32117380

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants.</title>
<author>
<name sortKey="Garcia, S Nia" sort="Garcia, S Nia" uniqKey="Garcia S" first="S Nia" last="Garcia">S Nia Garcia</name>
<affiliation>
<nlm:affiliation>Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Barcelona, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wendel, Jonathan F" sort="Wendel, Jonathan F" uniqKey="Wendel J" first="Jonathan F" last="Wendel">Jonathan F. Wendel</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borowska Zuchowska, Natalia" sort="Borowska Zuchowska, Natalia" uniqKey="Borowska Zuchowska N" first="Natalia" last="Borowska-Zuchowska">Natalia Borowska-Zuchowska</name>
<affiliation>
<nlm:affiliation>Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ainouche, Malika" sort="Ainouche, Malika" uniqKey="Ainouche M" first="Malika" last="Aïnouche">Malika Aïnouche</name>
<affiliation>
<nlm:affiliation>UMR CNRS 6553 ECOBIO, Université de Rennes 1, Rennes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuderova, Alena" sort="Kuderova, Alena" uniqKey="Kuderova A" first="Alena" last="Kuderova">Alena Kuderova</name>
<affiliation>
<nlm:affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kovarik, Ales" sort="Kovarik, Ales" uniqKey="Kovarik A" first="Ales" last="Kovarik">Ales Kovarik</name>
<affiliation>
<nlm:affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32117380</idno>
<idno type="pmid">32117380</idno>
<idno type="doi">10.3389/fpls.2020.00041</idno>
<idno type="wicri:Area/PubMed/Corpus">000198</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000198</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants.</title>
<author>
<name sortKey="Garcia, S Nia" sort="Garcia, S Nia" uniqKey="Garcia S" first="S Nia" last="Garcia">S Nia Garcia</name>
<affiliation>
<nlm:affiliation>Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Barcelona, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wendel, Jonathan F" sort="Wendel, Jonathan F" uniqKey="Wendel J" first="Jonathan F" last="Wendel">Jonathan F. Wendel</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borowska Zuchowska, Natalia" sort="Borowska Zuchowska, Natalia" uniqKey="Borowska Zuchowska N" first="Natalia" last="Borowska-Zuchowska">Natalia Borowska-Zuchowska</name>
<affiliation>
<nlm:affiliation>Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ainouche, Malika" sort="Ainouche, Malika" uniqKey="Ainouche M" first="Malika" last="Aïnouche">Malika Aïnouche</name>
<affiliation>
<nlm:affiliation>UMR CNRS 6553 ECOBIO, Université de Rennes 1, Rennes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuderova, Alena" sort="Kuderova, Alena" uniqKey="Kuderova A" first="Alena" last="Kuderova">Alena Kuderova</name>
<affiliation>
<nlm:affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kovarik, Ales" sort="Kovarik, Ales" uniqKey="Kovarik A" first="Ales" last="Kovarik">Ales Kovarik</name>
<affiliation>
<nlm:affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32117380</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants.</ArticleTitle>
<Pagination>
<MedlinePgn>41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00041</ELocationID>
<Abstract>
<AbstractText Label="Introduction" NlmCategory="UNASSIGNED">Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">(i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted
<i>in silico</i>
from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr)
<i>Gossypium</i>
and
<i>Brachypodium</i>
allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures.</AbstractText>
<AbstractText Label="Conclusion" NlmCategory="UNASSIGNED">We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.</AbstractText>
<CopyrightInformation>Copyright © 2020 Garcia, Wendel, Borowska-Zuchowska, Aïnouche, Kuderova and Kovarik.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Sònia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Barcelona, Spain.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wendel</LastName>
<ForeName>Jonathan F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borowska-Zuchowska</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aïnouche</LastName>
<ForeName>Malika</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>UMR CNRS 6553 ECOBIO, Université de Rennes 1, Rennes, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuderova</LastName>
<ForeName>Alena</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kovarik</LastName>
<ForeName>Ales</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">5S rRNA genes</Keyword>
<Keyword MajorTopicYN="N">allopolyploidy</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">graph structure clustering</Keyword>
<Keyword MajorTopicYN="N">high-throughput sequencing</Keyword>
<Keyword MajorTopicYN="N">hybridization</Keyword>
<Keyword MajorTopicYN="N">repeatome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32117380</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00041</ArticleId>
<ArticleId IdType="pmc">PMC7025596</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2017 Mar;89(5):1020-1030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27943584</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2016 Nov 21;11(11):e0167177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27870903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosome Res. 2019 Mar;27(1-2):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30511202</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2016 Jul;21(7):609-621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27021699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2017 Aug 1;120(2):183-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28854567</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2001 Feb;18(2):112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome. 2012 Mar;55(3):177-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22338617</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Evolution. 2003 Nov;57(11):2475-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14686525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome. 2008 May;51(5):332-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2014 Jan 13;14:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418109</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Q Rev Biol. 1995 Sep;70(3):297-320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2019 May 16;10:613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31156676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Phylogenet Evol. 2003 Dec;29(3):417-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615184</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>G3 (Bethesda). 2015 Nov 03;6(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26530424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2007;175(4):756-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688590</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protoplasma. 2018 Sep;255(5):1363-1372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29541843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Rep. 2010 Apr;37(4):1897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19626457</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Results Probl Cell Differ. 1994;20:3-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8036320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome. 2006 Jul;49(7):840-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16936792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2014 Sep;203(4):1096-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24916080</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Genet Dev. 2018 Apr;49:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29438956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 7;45(12):e111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28402514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2013 Sep;30(9):2065-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741054</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(5):e36963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22606317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Heredity (Edinb). 2002 Jan;88(1):19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11813102</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Jul 13;7(1):5260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28706212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24400905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2013 Mar 15;29(6):792-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23376349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2012 Feb;109(2):385-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22213013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1999 Mar;16(3):311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Syst Biol. 2014 Jul;63(4):543-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24682414</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosome Res. 2002;10(2):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11993938</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Jun;86(11):4132-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosoma. 2012 Aug;121(4):389-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527113</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosome Res. 2019 Mar;27(1-2):89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30719681</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2012 Dec 23;13:722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosoma. 2016 Sep;125(4):683-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26637996</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2017 Jul;18(7):411-424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28502977</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Phylogenet Evol. 1995 Sep;4(3):298-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8845966</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2018 Apr 18;9:513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29720992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Phylogenet Evol. 2007 Aug;44(2):911-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17383902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7816833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Heredity (Edinb). 2017 Jun;118(6):513-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28295029</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jul 15;11:378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20633259</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2018 Oct 04;9:1371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30337933</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome. 2004 Jun;47(3):590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190376</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2019 May 20;123(5):767-781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30265284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408163</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Syst Biol. 2015 Jan;64(1):112-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25261464</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2008 May;101(7):909-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18285356</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Gene. 1997 Dec 19;204(1-2):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9434162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2012 Nov 26;12:225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181612</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Genet. 2014;48:485-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25421600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol Evol. 2019 Jan 1;11(1):53-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30476109</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cytogenet Genome Res. 2015;146(3):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26489031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2017 May 18;18(1):391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28521734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome. 2008 Aug;51(8):589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650949</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Mol Sci. 2019 Feb 09;20(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30744119</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 2006 Mar;112(5):924-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397788</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Phylogenet Evol. 2001 Nov;21(2):198-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2011 May 18;11:127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592357</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2012 Jun 20;12:95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22716941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 1994 Sep 1;4(9):777-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7820547</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1995 May;140(1):325-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7635297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1996 Jun;42(6):685-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 2015 Nov;102(11):1753-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosoma. 2017 Mar;126(2):325-335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27645892</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 2005 Feb;110(4):730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1982 Sep 9;299(5879):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7110332</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Heredity (Edinb). 2003 Sep;91(3):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000198 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000198 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32117380
   |texte=   The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32117380" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021