Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.

Identifieur interne : 002298 ( PubMed/Checkpoint ); précédent : 002297; suivant : 002299

Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.

Auteurs : Mehmet A. Kilic [Royaume-Uni] ; Stephen Spiro ; Geoffrey R. Moore

Source :

RBID : pubmed:12876316

Descripteurs français

English descriptors

Abstract

The stability of Rhodobacter capsulatus bacterioferritin, a 24-meric homopolymer, toward denaturation on variation in pH and temperature, and increasing concentrations of urea and guanidine.HCl was investigated with native PAGE, and CD and fluorescence spectroscopies. With temperature and urea, the wild-type protein denatured without discernible intermediates in the equilibrium experiments, but with guanidine.HCl (Gnd.HCl) one or more intermediate species were apparent at relatively low Gnd.HCl concentrations. Dissociated subunit monomers, or aggregates smaller than 24-mers containing the high alpha-helical content characteristic of the native protein were not obtained at any pH without a high proportion of the 24-mer being present, and taken together with the other denaturation experiments and the construction of stable subunit dimers by site-directed mutagenesis, this observation indicates that folding of the bacterioferritin monomer could be coupled to its association into a dimer. Glu 128 and Glu 135 were replaced by alanine and arginine in a series of mutants to determine their role in stabilizing the 24-meric oligomer. The Glu128Ala, Glu135Ala and Glu135Arg variants retained a 24-meric structure, but the Glu128Ala/Glu135Ala and Glu128Arg/Glu135Arg variants were stable subunit dimers. CD spectra of the Glu135Arg, Glu128Ala/Glu135Ala, and Glu128Arg/Glu135Arg variants showed that they retained the high alpha-helical content of the wild-type protein. The 24-meric Glu135Arg variant was less stable than the wild-type protein (T(m), [Urea](50%) and [Gnd.HCl](50%) of 59 degrees C, 4.9 M and 3.2 M compared with 73 degrees C, approximately 8 M and 4.3 M, respectively), and the dimeric Glu128Arg/Glu135Arg variant was less stable still (T(m), [Urea](50%) and [Gnd.HCl](50%) of 43 degrees C, approximately 3.2 M and 1.8 M, respectively). The differences in stability are roughly additive, indicating that the salt-bridges formed by Glu 128 and Glu 135 in the native oligomer, with Arg 61 and the amino-terminal amine of neighboring subunits, respectively, contribute equally to the stability of the subunit assembly. The additivity and assembly states of the variant proteins suggest that the interactions involving Glu 128 and Glu 135 contribute significantly to stabilizing the 24-mer relative to the subunit dimer.

DOI: 10.1110/ps.0301903
PubMed: 12876316


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:12876316

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.</title>
<author>
<name sortKey="Kilic, Mehmet A" sort="Kilic, Mehmet A" uniqKey="Kilic M" first="Mehmet A" last="Kilic">Mehmet A. Kilic</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ</wicri:regionArea>
<wicri:noRegion>Norwich NR4 7TJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spiro, Stephen" sort="Spiro, Stephen" uniqKey="Spiro S" first="Stephen" last="Spiro">Stephen Spiro</name>
</author>
<author>
<name sortKey="Moore, Geoffrey R" sort="Moore, Geoffrey R" uniqKey="Moore G" first="Geoffrey R" last="Moore">Geoffrey R. Moore</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12876316</idno>
<idno type="pmid">12876316</idno>
<idno type="doi">10.1110/ps.0301903</idno>
<idno type="wicri:Area/PubMed/Corpus">002444</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002444</idno>
<idno type="wicri:Area/PubMed/Curation">002444</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002444</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002298</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002298</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.</title>
<author>
<name sortKey="Kilic, Mehmet A" sort="Kilic, Mehmet A" uniqKey="Kilic M" first="Mehmet A" last="Kilic">Mehmet A. Kilic</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ</wicri:regionArea>
<wicri:noRegion>Norwich NR4 7TJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spiro, Stephen" sort="Spiro, Stephen" uniqKey="Spiro S" first="Stephen" last="Spiro">Stephen Spiro</name>
</author>
<author>
<name sortKey="Moore, Geoffrey R" sort="Moore, Geoffrey R" uniqKey="Moore G" first="Geoffrey R" last="Moore">Geoffrey R. Moore</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biopolymers (chemistry)</term>
<term>Biopolymers (genetics)</term>
<term>Biopolymers (metabolism)</term>
<term>Circular Dichroism</term>
<term>Cytochrome b Group (chemistry)</term>
<term>Cytochrome b Group (genetics)</term>
<term>Cytochrome b Group (metabolism)</term>
<term>Electrophoresis, Agar Gel</term>
<term>Ferritins (chemistry)</term>
<term>Ferritins (genetics)</term>
<term>Ferritins (metabolism)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation (genetics)</term>
<term>Protein Conformation (drug effects)</term>
<term>Protein Denaturation (drug effects)</term>
<term>Protein Folding</term>
<term>Rhodobacter capsulatus (chemistry)</term>
<term>Rhodobacter capsulatus (genetics)</term>
<term>Structure-Activity Relationship</term>
<term>Temperature</term>
<term>Thermodynamics</term>
<term>Urea (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biopolymères ()</term>
<term>Biopolymères (génétique)</term>
<term>Biopolymères (métabolisme)</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation des protéines ()</term>
<term>Cytochromes de type b ()</term>
<term>Cytochromes de type b (génétique)</term>
<term>Cytochromes de type b (métabolisme)</term>
<term>Dichroïsme circulaire</term>
<term>Dénaturation des protéines ()</term>
<term>Ferritines ()</term>
<term>Ferritines (génétique)</term>
<term>Ferritines (métabolisme)</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Mutation (génétique)</term>
<term>Pliage des protéines</term>
<term>Protéines bactériennes ()</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Relation structure-activité</term>
<term>Rhodobacter capsulatus ()</term>
<term>Rhodobacter capsulatus (génétique)</term>
<term>Température</term>
<term>Thermodynamique</term>
<term>Urée (pharmacologie)</term>
<term>Électrophorèse sur gel d'agar</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Biopolymers</term>
<term>Cytochrome b Group</term>
<term>Ferritins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Biopolymers</term>
<term>Cytochrome b Group</term>
<term>Ferritins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Biopolymers</term>
<term>Cytochrome b Group</term>
<term>Ferritins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Rhodobacter capsulatus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Rhodobacter capsulatus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Biopolymères</term>
<term>Cytochromes de type b</term>
<term>Ferritines</term>
<term>Mutation</term>
<term>Protéines bactériennes</term>
<term>Rhodobacter capsulatus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Biopolymères</term>
<term>Cytochromes de type b</term>
<term>Ferritines</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Urée</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Urea</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Electrophoresis, Agar Gel</term>
<term>Hydrogen-Ion Concentration</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Folding</term>
<term>Structure-Activity Relationship</term>
<term>Temperature</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biopolymères</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation des protéines</term>
<term>Cytochromes de type b</term>
<term>Dichroïsme circulaire</term>
<term>Dénaturation des protéines</term>
<term>Ferritines</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Pliage des protéines</term>
<term>Protéines bactériennes</term>
<term>Relation structure-activité</term>
<term>Rhodobacter capsulatus</term>
<term>Température</term>
<term>Thermodynamique</term>
<term>Électrophorèse sur gel d'agar</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The stability of Rhodobacter capsulatus bacterioferritin, a 24-meric homopolymer, toward denaturation on variation in pH and temperature, and increasing concentrations of urea and guanidine.HCl was investigated with native PAGE, and CD and fluorescence spectroscopies. With temperature and urea, the wild-type protein denatured without discernible intermediates in the equilibrium experiments, but with guanidine.HCl (Gnd.HCl) one or more intermediate species were apparent at relatively low Gnd.HCl concentrations. Dissociated subunit monomers, or aggregates smaller than 24-mers containing the high alpha-helical content characteristic of the native protein were not obtained at any pH without a high proportion of the 24-mer being present, and taken together with the other denaturation experiments and the construction of stable subunit dimers by site-directed mutagenesis, this observation indicates that folding of the bacterioferritin monomer could be coupled to its association into a dimer. Glu 128 and Glu 135 were replaced by alanine and arginine in a series of mutants to determine their role in stabilizing the 24-meric oligomer. The Glu128Ala, Glu135Ala and Glu135Arg variants retained a 24-meric structure, but the Glu128Ala/Glu135Ala and Glu128Arg/Glu135Arg variants were stable subunit dimers. CD spectra of the Glu135Arg, Glu128Ala/Glu135Ala, and Glu128Arg/Glu135Arg variants showed that they retained the high alpha-helical content of the wild-type protein. The 24-meric Glu135Arg variant was less stable than the wild-type protein (T(m), [Urea](50%) and [Gnd.HCl](50%) of 59 degrees C, 4.9 M and 3.2 M compared with 73 degrees C, approximately 8 M and 4.3 M, respectively), and the dimeric Glu128Arg/Glu135Arg variant was less stable still (T(m), [Urea](50%) and [Gnd.HCl](50%) of 43 degrees C, approximately 3.2 M and 1.8 M, respectively). The differences in stability are roughly additive, indicating that the salt-bridges formed by Glu 128 and Glu 135 in the native oligomer, with Arg 61 and the amino-terminal amine of neighboring subunits, respectively, contribute equally to the stability of the subunit assembly. The additivity and assembly states of the variant proteins suggest that the interactions involving Glu 128 and Glu 135 contribute significantly to stabilizing the 24-mer relative to the subunit dimer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12876316</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2003</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.</ArticleTitle>
<Pagination>
<MedlinePgn>1663-74</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The stability of Rhodobacter capsulatus bacterioferritin, a 24-meric homopolymer, toward denaturation on variation in pH and temperature, and increasing concentrations of urea and guanidine.HCl was investigated with native PAGE, and CD and fluorescence spectroscopies. With temperature and urea, the wild-type protein denatured without discernible intermediates in the equilibrium experiments, but with guanidine.HCl (Gnd.HCl) one or more intermediate species were apparent at relatively low Gnd.HCl concentrations. Dissociated subunit monomers, or aggregates smaller than 24-mers containing the high alpha-helical content characteristic of the native protein were not obtained at any pH without a high proportion of the 24-mer being present, and taken together with the other denaturation experiments and the construction of stable subunit dimers by site-directed mutagenesis, this observation indicates that folding of the bacterioferritin monomer could be coupled to its association into a dimer. Glu 128 and Glu 135 were replaced by alanine and arginine in a series of mutants to determine their role in stabilizing the 24-meric oligomer. The Glu128Ala, Glu135Ala and Glu135Arg variants retained a 24-meric structure, but the Glu128Ala/Glu135Ala and Glu128Arg/Glu135Arg variants were stable subunit dimers. CD spectra of the Glu135Arg, Glu128Ala/Glu135Ala, and Glu128Arg/Glu135Arg variants showed that they retained the high alpha-helical content of the wild-type protein. The 24-meric Glu135Arg variant was less stable than the wild-type protein (T(m), [Urea](50%) and [Gnd.HCl](50%) of 59 degrees C, 4.9 M and 3.2 M compared with 73 degrees C, approximately 8 M and 4.3 M, respectively), and the dimeric Glu128Arg/Glu135Arg variant was less stable still (T(m), [Urea](50%) and [Gnd.HCl](50%) of 43 degrees C, approximately 3.2 M and 1.8 M, respectively). The differences in stability are roughly additive, indicating that the salt-bridges formed by Glu 128 and Glu 135 in the native oligomer, with Arg 61 and the amino-terminal amine of neighboring subunits, respectively, contribute equally to the stability of the subunit assembly. The additivity and assembly states of the variant proteins suggest that the interactions involving Glu 128 and Glu 135 contribute significantly to stabilizing the 24-mer relative to the subunit dimer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kilic</LastName>
<ForeName>Mehmet A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spiro</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Geoffrey R</ForeName>
<Initials>GR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001704">Biopolymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003573">Cytochrome b Group</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8W8T17847W</RegistryNumber>
<NameOfSubstance UI="D014508">Urea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-73-2</RegistryNumber>
<NameOfSubstance UI="D005293">Ferritins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-38-5</RegistryNumber>
<NameOfSubstance UI="C018032">bacterioferritin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001704" MajorTopicYN="N">Biopolymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003573" MajorTopicYN="N">Cytochrome b Group</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004587" MajorTopicYN="N">Electrophoresis, Agar Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016354" MajorTopicYN="Y">Rhodobacter capsulatus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014508" MajorTopicYN="N">Urea</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12876316</ArticleId>
<ArticleId IdType="pmc">PMC2323953</ArticleId>
<ArticleId IdType="doi">10.1110/ps.0301903</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1981 Sep 1;20(18):5226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7295674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Aug 1;223(3):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8055962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6142491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 Jan;7(1):38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Apr 25;39(16):4915-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Nov;182(22):6434-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11053388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 2;277(31):27689-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12016214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1972 May 23;11(11):2176-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5063666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1973 Jun;133(2):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4737425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1979 May 3;279(5708):81-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">450081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1980;36(2-3):56-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7008081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 May 23;34(20):6795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 May 19;248(5):949-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7760335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1994 Jul;1(7):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7664064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Oct 6;270(40):23268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7559480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Dec 1;312 ( Pt 2):385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8526846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Jan 1;325(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8554343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1996 Jun 1;139(2-3):143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8674981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8695634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Mar 1;322 ( Pt 2):461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Nov 12;201(1-2):31-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Met Ions Biol Syst. 1998;35:479-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9444767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Met Ions Biol Syst. 1998;35:515-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9444768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Apr;5(4):294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 May;7(5):1083-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9605313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Jul 7;37(27):9743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1998 May;11(5):377-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9681870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1998;40:281-351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 1999 Jun;4(3):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10439069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1986;131:218-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3773759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1986;131:266-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3773761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Apr 7;26(7):1831-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3593696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem Hoppe Seyler. 1987 Apr;368(4):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3606823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1987;49(2-3):117-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Oct 18;27(21):8063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3233195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Oct 18;27(21):8069-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3233196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Mar 13;29(10):2564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2110472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Mar 6;29(9):2403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2337607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 23;346(6286):771-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2167456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Aug 21;29(33):7584-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2271518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 May 30;1078(1):111-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1904771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Oct 29;30(43):10428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1931967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jul 15;267(20):14077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1629207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Apr 1;213(1):329-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8477705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Dec 27;336(2):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8262252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1983 May 24;22(11):2654-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6871153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Moore, Geoffrey R" sort="Moore, Geoffrey R" uniqKey="Moore G" first="Geoffrey R" last="Moore">Geoffrey R. Moore</name>
<name sortKey="Spiro, Stephen" sort="Spiro, Stephen" uniqKey="Spiro S" first="Stephen" last="Spiro">Stephen Spiro</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Kilic, Mehmet A" sort="Kilic, Mehmet A" uniqKey="Kilic M" first="Mehmet A" last="Kilic">Mehmet A. Kilic</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002298 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002298 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:12876316
   |texte=   Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:12876316" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021