Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.

Identifieur interne : 002195 ( PubMed/Checkpoint ); précédent : 002194; suivant : 002196

Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.

Auteurs : Masahiko Hashimoto [États-Unis] ; Mateusz L. Hupert ; Michael C. Murphy ; Steven A. Soper ; Yu-Wei Cheng ; Francis Barany

Source :

RBID : pubmed:15889915

Descripteurs français

English descriptors

Abstract

We have fabricated a flow-through biochip assembly that consisted of two different microchips: (1) a polycarbonate (PC) chip for performing an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using an universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for the LDR in a continuous-flow format, in which two primers (discriminating primer that carried the complement base to the mutation being interrogated and a common primer) that flanked the point mutation and were ligated only when the particular mutation was present in the genomic DNA. The miniaturized reactor architecture allowed enhanced reaction speed due to its high surface-to-volume ratio and efficient thermal management capabilities. A PMMA chip was employed as the microarray device, where zip code sequences (24-mers), which were complementary to sequences present on the target, were microprinted into fluidic channels embossed into the PMMA substrate. Microfluidic addressing of the array reduced the hybridization time significantly through enhanced mass transport to the surface-tethered zip code probes. The two microchips were assembled as a single integrated unit with a novel interconnect concept to produce the flow-through microfluidic biochip. A microgasket, fabricated from an elastomer poly(dimethylsiloxane) with a total volume of the interconnecting assembly of <200 nL, was used as the interconnect between the two chips to produce the three-dimensional microfluidic network. We successfully demonstrated the ability to detect one mutant DNA in 100 normal sequences with the biochip assembly. The LDR/hybridization assay using the assembly performed the entire assay at a relatively fast processing speed: 6.5 min for on-chip LDR, 10 min for washing, and 2.6 min for fluorescence scanning (total processing time 19.1 min) and could screen multiple mutations simultaneously.

DOI: 10.1021/ac048184d
PubMed: 15889915


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15889915

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.</title>
<author>
<name sortKey="Hashimoto, Masahiko" sort="Hashimoto, Masahiko" uniqKey="Hashimoto M" first="Masahiko" last="Hashimoto">Masahiko Hashimoto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803</wicri:regionArea>
<wicri:noRegion>Louisiana 70803</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hupert, Mateusz L" sort="Hupert, Mateusz L" uniqKey="Hupert M" first="Mateusz L" last="Hupert">Mateusz L. Hupert</name>
</author>
<author>
<name sortKey="Murphy, Michael C" sort="Murphy, Michael C" uniqKey="Murphy M" first="Michael C" last="Murphy">Michael C. Murphy</name>
</author>
<author>
<name sortKey="Soper, Steven A" sort="Soper, Steven A" uniqKey="Soper S" first="Steven A" last="Soper">Steven A. Soper</name>
</author>
<author>
<name sortKey="Cheng, Yu Wei" sort="Cheng, Yu Wei" uniqKey="Cheng Y" first="Yu-Wei" last="Cheng">Yu-Wei Cheng</name>
</author>
<author>
<name sortKey="Barany, Francis" sort="Barany, Francis" uniqKey="Barany F" first="Francis" last="Barany">Francis Barany</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15889915</idno>
<idno type="pmid">15889915</idno>
<idno type="doi">10.1021/ac048184d</idno>
<idno type="wicri:Area/PubMed/Corpus">002336</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002336</idno>
<idno type="wicri:Area/PubMed/Curation">002336</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002336</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002195</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.</title>
<author>
<name sortKey="Hashimoto, Masahiko" sort="Hashimoto, Masahiko" uniqKey="Hashimoto M" first="Masahiko" last="Hashimoto">Masahiko Hashimoto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803</wicri:regionArea>
<wicri:noRegion>Louisiana 70803</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hupert, Mateusz L" sort="Hupert, Mateusz L" uniqKey="Hupert M" first="Mateusz L" last="Hupert">Mateusz L. Hupert</name>
</author>
<author>
<name sortKey="Murphy, Michael C" sort="Murphy, Michael C" uniqKey="Murphy M" first="Michael C" last="Murphy">Michael C. Murphy</name>
</author>
<author>
<name sortKey="Soper, Steven A" sort="Soper, Steven A" uniqKey="Soper S" first="Steven A" last="Soper">Steven A. Soper</name>
</author>
<author>
<name sortKey="Cheng, Yu Wei" sort="Cheng, Yu Wei" uniqKey="Cheng Y" first="Yu-Wei" last="Cheng">Yu-Wei Cheng</name>
</author>
<author>
<name sortKey="Barany, Francis" sort="Barany, Francis" uniqKey="Barany F" first="Francis" last="Barany">Francis Barany</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="ISSN">0003-2700</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Biosensing Techniques (methods)</term>
<term>Genes, ras (genetics)</term>
<term>Humans</term>
<term>Hybridization, Genetic</term>
<term>Microfluidics (methods)</term>
<term>Microscopy, Fluorescence (methods)</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Point Mutation (genetics)</term>
<term>Polymethyl Methacrylate (chemistry)</term>
<term>Silicone Elastomers (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Gènes ras (génétique)</term>
<term>Humains</term>
<term>Hybridation génétique</term>
<term>Microfluidique ()</term>
<term>Microscopie de fluorescence ()</term>
<term>Mutation ponctuelle (génétique)</term>
<term>Poly(méthacrylate de méthyle) ()</term>
<term>Siloxane élastomère ()</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie ()</term>
<term>Techniques de biocapteur ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polymethyl Methacrylate</term>
<term>Silicone Elastomers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, ras</term>
<term>Point Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes ras</term>
<term>Mutation ponctuelle</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Microfluidics</term>
<term>Microscopy, Fluorescence</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Humans</term>
<term>Hybridization, Genetic</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Hybridation génétique</term>
<term>Microfluidique</term>
<term>Microscopie de fluorescence</term>
<term>Poly(méthacrylate de méthyle)</term>
<term>Siloxane élastomère</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Techniques de biocapteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have fabricated a flow-through biochip assembly that consisted of two different microchips: (1) a polycarbonate (PC) chip for performing an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using an universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for the LDR in a continuous-flow format, in which two primers (discriminating primer that carried the complement base to the mutation being interrogated and a common primer) that flanked the point mutation and were ligated only when the particular mutation was present in the genomic DNA. The miniaturized reactor architecture allowed enhanced reaction speed due to its high surface-to-volume ratio and efficient thermal management capabilities. A PMMA chip was employed as the microarray device, where zip code sequences (24-mers), which were complementary to sequences present on the target, were microprinted into fluidic channels embossed into the PMMA substrate. Microfluidic addressing of the array reduced the hybridization time significantly through enhanced mass transport to the surface-tethered zip code probes. The two microchips were assembled as a single integrated unit with a novel interconnect concept to produce the flow-through microfluidic biochip. A microgasket, fabricated from an elastomer poly(dimethylsiloxane) with a total volume of the interconnecting assembly of <200 nL, was used as the interconnect between the two chips to produce the three-dimensional microfluidic network. We successfully demonstrated the ability to detect one mutant DNA in 100 normal sequences with the biochip assembly. The LDR/hybridization assay using the assembly performed the entire assay at a relatively fast processing speed: 6.5 min for on-chip LDR, 10 min for washing, and 2.6 min for fluorescence scanning (total processing time 19.1 min) and could screen multiple mutations simultaneously.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15889915</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0003-2700</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>77</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.</ArticleTitle>
<Pagination>
<MedlinePgn>3243-55</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have fabricated a flow-through biochip assembly that consisted of two different microchips: (1) a polycarbonate (PC) chip for performing an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using an universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for the LDR in a continuous-flow format, in which two primers (discriminating primer that carried the complement base to the mutation being interrogated and a common primer) that flanked the point mutation and were ligated only when the particular mutation was present in the genomic DNA. The miniaturized reactor architecture allowed enhanced reaction speed due to its high surface-to-volume ratio and efficient thermal management capabilities. A PMMA chip was employed as the microarray device, where zip code sequences (24-mers), which were complementary to sequences present on the target, were microprinted into fluidic channels embossed into the PMMA substrate. Microfluidic addressing of the array reduced the hybridization time significantly through enhanced mass transport to the surface-tethered zip code probes. The two microchips were assembled as a single integrated unit with a novel interconnect concept to produce the flow-through microfluidic biochip. A microgasket, fabricated from an elastomer poly(dimethylsiloxane) with a total volume of the interconnecting assembly of <200 nL, was used as the interconnect between the two chips to produce the three-dimensional microfluidic network. We successfully demonstrated the ability to detect one mutant DNA in 100 normal sequences with the biochip assembly. The LDR/hybridization assay using the assembly performed the entire assay at a relatively fast processing speed: 6.5 min for on-chip LDR, 10 min for washing, and 2.6 min for fluorescence scanning (total processing time 19.1 min) and could screen multiple mutations simultaneously.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hashimoto</LastName>
<ForeName>Masahiko</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hupert</LastName>
<ForeName>Mateusz L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Murphy</LastName>
<ForeName>Michael C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Soper</LastName>
<ForeName>Steven A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Yu-Wei</ForeName>
<Initials>YW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barany</LastName>
<ForeName>Francis</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>EB002115</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012826">Silicone Elastomers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9011-14-7</RegistryNumber>
<NameOfSubstance UI="D019904">Polymethyl Methacrylate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015374" MajorTopicYN="N">Biosensing Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011905" MajorTopicYN="N">Genes, ras</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044085" MajorTopicYN="N">Microfluidics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019904" MajorTopicYN="N">Polymethyl Methacrylate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012826" MajorTopicYN="N">Silicone Elastomers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15889915</ArticleId>
<ArticleId IdType="doi">10.1021/ac048184d</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Barany, Francis" sort="Barany, Francis" uniqKey="Barany F" first="Francis" last="Barany">Francis Barany</name>
<name sortKey="Cheng, Yu Wei" sort="Cheng, Yu Wei" uniqKey="Cheng Y" first="Yu-Wei" last="Cheng">Yu-Wei Cheng</name>
<name sortKey="Hupert, Mateusz L" sort="Hupert, Mateusz L" uniqKey="Hupert M" first="Mateusz L" last="Hupert">Mateusz L. Hupert</name>
<name sortKey="Murphy, Michael C" sort="Murphy, Michael C" uniqKey="Murphy M" first="Michael C" last="Murphy">Michael C. Murphy</name>
<name sortKey="Soper, Steven A" sort="Soper, Steven A" uniqKey="Soper S" first="Steven A" last="Soper">Steven A. Soper</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Hashimoto, Masahiko" sort="Hashimoto, Masahiko" uniqKey="Hashimoto M" first="Masahiko" last="Hashimoto">Masahiko Hashimoto</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002195 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002195 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15889915
   |texte=   Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15889915" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021