Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.

Identifieur interne : 002194 ( PubMed/Checkpoint ); précédent : 002193; suivant : 002195

Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.

Auteurs : Daniel Z. Skinner [États-Unis] ; Patricia A. Okubara ; Kwang-Hyun Baek ; Douglas R. Call

Source :

RBID : pubmed:15682265

Descripteurs français

English descriptors

Abstract

A computer script was written in the Perl language to design equal-length long oligonucleotides from DNA sequences. The script allows the user to specify G + C content, melting temperature, self-complementarity, the maximum number of contiguous duplicate bases, whether to start with the first start codon and whether to report reverse complements. Microarrays were fabricated with 95 oligonucleotides (60 mers) representing 41 genes. The microarray was interrogated with cDNA from roots and shoots of two near-isogenic lines and a commercial cultivar of Triticum aestivum L. (hexaploid wheat) challenged with cold temperature, hot temperature, or the biological control bacterium Pseudomonas fluorescens. Self-complementarity of the oligonucleotides was negatively correlated with signal intensity in 23 of 54 arrays (39%; P <0.01). Tyramide signal amplification was essential for signal generation and detection. Genes involved in signal transduction pathways responded similarly following exposure to cold, heat and P. fluorescens, suggesting intersection of the pathways involved in response to these disparate stress factors. Microarray results were corroborated by quantitative real-time PCR in 75% of samples assayed. We conclude that long oligonucleotide microarrays for interrogation with cDNA from hexaploid wheat should be constructed from oligonucleotides having minimal self complementarity that also meet user-specified requirements of length, G + C content and melting temperature; multiple oligonucleotides should be used to represent each gene; and Tyramide signal amplification is useful in wheat oligonucleotide microarray studies.

DOI: 10.1007/s10142-005-0130-9
PubMed: 15682265


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15682265

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.</title>
<author>
<name sortKey="Skinner, Daniel Z" sort="Skinner, Daniel Z" uniqKey="Skinner D" first="Daniel Z" last="Skinner">Daniel Z. Skinner</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-ARS and Crop and Soil Science Department, Washington State University, 209 Johnson Hall, Pullman, WA 99164, USA. dzs@wsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS and Crop and Soil Science Department, Washington State University, 209 Johnson Hall, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Okubara, Patricia A" sort="Okubara, Patricia A" uniqKey="Okubara P" first="Patricia A" last="Okubara">Patricia A. Okubara</name>
</author>
<author>
<name sortKey="Baek, Kwang Hyun" sort="Baek, Kwang Hyun" uniqKey="Baek K" first="Kwang-Hyun" last="Baek">Kwang-Hyun Baek</name>
</author>
<author>
<name sortKey="Call, Douglas R" sort="Call, Douglas R" uniqKey="Call D" first="Douglas R" last="Call">Douglas R. Call</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15682265</idno>
<idno type="pmid">15682265</idno>
<idno type="doi">10.1007/s10142-005-0130-9</idno>
<idno type="wicri:Area/PubMed/Corpus">002350</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002350</idno>
<idno type="wicri:Area/PubMed/Curation">002350</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002350</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002194</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.</title>
<author>
<name sortKey="Skinner, Daniel Z" sort="Skinner, Daniel Z" uniqKey="Skinner D" first="Daniel Z" last="Skinner">Daniel Z. Skinner</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-ARS and Crop and Soil Science Department, Washington State University, 209 Johnson Hall, Pullman, WA 99164, USA. dzs@wsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS and Crop and Soil Science Department, Washington State University, 209 Johnson Hall, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Okubara, Patricia A" sort="Okubara, Patricia A" uniqKey="Okubara P" first="Patricia A" last="Okubara">Patricia A. Okubara</name>
</author>
<author>
<name sortKey="Baek, Kwang Hyun" sort="Baek, Kwang Hyun" uniqKey="Baek K" first="Kwang-Hyun" last="Baek">Kwang-Hyun Baek</name>
</author>
<author>
<name sortKey="Call, Douglas R" sort="Call, Douglas R" uniqKey="Call D" first="Douglas R" last="Call">Douglas R. Call</name>
</author>
</analytic>
<series>
<title level="j">Functional & integrative genomics</title>
<idno type="ISSN">1438-793X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Hybridization (methods)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Software</term>
<term>Triticum (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Hybridation d'acides nucléiques ()</term>
<term>Logiciel</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie ()</term>
<term>Triticum (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Hybridation d'acides nucléiques</term>
<term>Logiciel</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A computer script was written in the Perl language to design equal-length long oligonucleotides from DNA sequences. The script allows the user to specify G + C content, melting temperature, self-complementarity, the maximum number of contiguous duplicate bases, whether to start with the first start codon and whether to report reverse complements. Microarrays were fabricated with 95 oligonucleotides (60 mers) representing 41 genes. The microarray was interrogated with cDNA from roots and shoots of two near-isogenic lines and a commercial cultivar of Triticum aestivum L. (hexaploid wheat) challenged with cold temperature, hot temperature, or the biological control bacterium Pseudomonas fluorescens. Self-complementarity of the oligonucleotides was negatively correlated with signal intensity in 23 of 54 arrays (39%; P <0.01). Tyramide signal amplification was essential for signal generation and detection. Genes involved in signal transduction pathways responded similarly following exposure to cold, heat and P. fluorescens, suggesting intersection of the pathways involved in response to these disparate stress factors. Microarray results were corroborated by quantitative real-time PCR in 75% of samples assayed. We conclude that long oligonucleotide microarrays for interrogation with cDNA from hexaploid wheat should be constructed from oligonucleotides having minimal self complementarity that also meet user-specified requirements of length, G + C content and melting temperature; multiple oligonucleotides should be used to represent each gene; and Tyramide signal amplification is useful in wheat oligonucleotide microarray studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15682265</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1438-793X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2005</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Functional & integrative genomics</Title>
<ISOAbbreviation>Funct. Integr. Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.</ArticleTitle>
<Pagination>
<MedlinePgn>70-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A computer script was written in the Perl language to design equal-length long oligonucleotides from DNA sequences. The script allows the user to specify G + C content, melting temperature, self-complementarity, the maximum number of contiguous duplicate bases, whether to start with the first start codon and whether to report reverse complements. Microarrays were fabricated with 95 oligonucleotides (60 mers) representing 41 genes. The microarray was interrogated with cDNA from roots and shoots of two near-isogenic lines and a commercial cultivar of Triticum aestivum L. (hexaploid wheat) challenged with cold temperature, hot temperature, or the biological control bacterium Pseudomonas fluorescens. Self-complementarity of the oligonucleotides was negatively correlated with signal intensity in 23 of 54 arrays (39%; P <0.01). Tyramide signal amplification was essential for signal generation and detection. Genes involved in signal transduction pathways responded similarly following exposure to cold, heat and P. fluorescens, suggesting intersection of the pathways involved in response to these disparate stress factors. Microarray results were corroborated by quantitative real-time PCR in 75% of samples assayed. We conclude that long oligonucleotide microarrays for interrogation with cDNA from hexaploid wheat should be constructed from oligonucleotides having minimal self complementarity that also meet user-specified requirements of length, G + C content and melting temperature; multiple oligonucleotides should be used to represent each gene; and Tyramide signal amplification is useful in wheat oligonucleotide microarray studies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skinner</LastName>
<ForeName>Daniel Z</ForeName>
<Initials>DZ</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS and Crop and Soil Science Department, Washington State University, 209 Johnson Hall, Pullman, WA 99164, USA. dzs@wsu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Okubara</LastName>
<ForeName>Patricia A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baek</LastName>
<ForeName>Kwang-Hyun</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Call</LastName>
<ForeName>Douglas R</ForeName>
<Initials>DR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Funct Integr Genomics</MedlineTA>
<NlmUniqueID>100939343</NlmUniqueID>
<ISSNLinking>1438-793X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2004</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15682265</ArticleId>
<ArticleId IdType="doi">10.1007/s10142-005-0130-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2001 Nov;17(11):1067-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1999 Jun;89(6):470-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Oct;12(10):911-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:117-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2001 Jan;91(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Dec;35(6):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14682056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:309-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Oct 22;306(5696):630-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15499004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(2):R9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Apr;34(2):217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2002 Feb;92(2):129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):486-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(2):177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14535883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 13;100(10):6263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Apr;42(4):1414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3491-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Aug;17(8):895-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15305611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Baek, Kwang Hyun" sort="Baek, Kwang Hyun" uniqKey="Baek K" first="Kwang-Hyun" last="Baek">Kwang-Hyun Baek</name>
<name sortKey="Call, Douglas R" sort="Call, Douglas R" uniqKey="Call D" first="Douglas R" last="Call">Douglas R. Call</name>
<name sortKey="Okubara, Patricia A" sort="Okubara, Patricia A" uniqKey="Okubara P" first="Patricia A" last="Okubara">Patricia A. Okubara</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Skinner, Daniel Z" sort="Skinner, Daniel Z" uniqKey="Skinner D" first="Daniel Z" last="Skinner">Daniel Z. Skinner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15682265
   |texte=   Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15682265" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021