Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Readjoiner: a fast and memory efficient string graph-based sequence assembler.

Identifieur interne : 001C42 ( PubMed/Checkpoint ); précédent : 001C41; suivant : 001C43

Readjoiner: a fast and memory efficient string graph-based sequence assembler.

Auteurs : Giorgio Gonnella [Allemagne] ; Stefan Kurtz

Source :

RBID : pubmed:22559072

Descripteurs français

English descriptors

Abstract

Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads.

DOI: 10.1186/1471-2105-13-82
PubMed: 22559072


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22559072

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Readjoiner: a fast and memory efficient string graph-based sequence assembler.</title>
<author>
<name sortKey="Gonnella, Giorgio" sort="Gonnella, Giorgio" uniqKey="Gonnella G" first="Giorgio" last="Gonnella">Giorgio Gonnella</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg</wicri:regionArea>
<wicri:noRegion>20146 Hamburg</wicri:noRegion>
<placeName>
<settlement type="city">Hambourg</settlement>
<region type="land" nuts="2">Hambourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kurtz, Stefan" sort="Kurtz, Stefan" uniqKey="Kurtz S" first="Stefan" last="Kurtz">Stefan Kurtz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22559072</idno>
<idno type="pmid">22559072</idno>
<idno type="doi">10.1186/1471-2105-13-82</idno>
<idno type="wicri:Area/PubMed/Corpus">001D83</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D83</idno>
<idno type="wicri:Area/PubMed/Curation">001D83</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D83</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C42</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Readjoiner: a fast and memory efficient string graph-based sequence assembler.</title>
<author>
<name sortKey="Gonnella, Giorgio" sort="Gonnella, Giorgio" uniqKey="Gonnella G" first="Giorgio" last="Gonnella">Giorgio Gonnella</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg</wicri:regionArea>
<wicri:noRegion>20146 Hamburg</wicri:noRegion>
<placeName>
<settlement type="city">Hambourg</settlement>
<region type="land" nuts="2">Hambourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kurtz, Stefan" sort="Kurtz, Stefan" uniqKey="Kurtz S" first="Stefan" last="Kurtz">Stefan Kurtz</name>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Genome, Human (genetics)</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Software</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN ()</term>
<term>Génome humain (génétique)</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Modèles génétiques</term>
<term>Simulation numérique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genome, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Génome humain</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Modèles génétiques</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">22559072</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>Readjoiner: a fast and memory efficient string graph-based sequence assembler.</ArticleTitle>
<Pagination>
<MedlinePgn>82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2105-13-82</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here we present efficient methods for the construction of a string graph from a set of sequencing reads. Our approach employs suffix sorting and scanning methods to compute suffix-prefix matches. Transitive edges are recognized and eliminated early in the process and the graph is efficiently constructed including irreducible edges only.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our suffix-prefix match determination and string graph construction algorithms have been implemented in the software package Readjoiner. Comparison with existing string graph-based assemblers shows that Readjoiner is faster and more space efficient. Readjoiner is available at http://www.zbh.uni-hamburg.de/readjoiner.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gonnella</LastName>
<ForeName>Giorgio</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kurtz</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015894" MajorTopicYN="N">Genome, Human</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22559072</ArticleId>
<ArticleId IdType="pii">1471-2105-13-82</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2105-13-82</ArticleId>
<ArticleId IdType="pmc">PMC3507659</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2224-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(2):R12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 1995 Summer;2(2):275-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7497129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 1;21 Suppl 2:ii79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Feb;18(2):324-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):802-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Nov;6(11 Suppl):S2-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19844227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 15;26(12):i367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20529929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 15;27(4):578-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Mar;22(3):549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):330-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(11):R116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jul 15;27(14):1901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jan;14(1):149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14707177</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Hambourg</li>
</region>
<settlement>
<li>Hambourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Kurtz, Stefan" sort="Kurtz, Stefan" uniqKey="Kurtz S" first="Stefan" last="Kurtz">Stefan Kurtz</name>
</noCountry>
<country name="Allemagne">
<region name="Hambourg">
<name sortKey="Gonnella, Giorgio" sort="Gonnella, Giorgio" uniqKey="Gonnella G" first="Giorgio" last="Gonnella">Giorgio Gonnella</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22559072
   |texte=   Readjoiner: a fast and memory efficient string graph-based sequence assembler.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22559072" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021