Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Abnormal iron homeostasis and neurodegeneration.

Identifieur interne : 001C09 ( PubMed/Checkpoint ); précédent : 001C08; suivant : 001C10

Abnormal iron homeostasis and neurodegeneration.

Auteurs : Barry B. Muhoberac [États-Unis] ; Ruben Vidal

Source :

RBID : pubmed:23908629

Abstract

Abnormal iron metabolism is observed in many neurodegenerative diseases, however, only two have shown dysregulation of brain iron homeostasis as the primary cause of neurodegeneration. Herein, we review one of these - hereditary ferritinopathy (HF) or neuroferritinopathy, which is an autosomal dominant, adult onset degenerative disease caused by mutations in the ferritin light chain (FTL) gene. HF has a clinical phenotype characterized by a progressive movement disorder, behavioral disturbances, and cognitive impairment. The main pathologic findings are cystic cavitation of the basal ganglia, the presence of ferritin inclusion bodies (IBs), and substantial iron deposition. Mutant FTL subunits have altered sequence and length but assemble into soluble 24-mers that are ultrastructurally indistinguishable from those of the wild type. Crystallography shows substantial localized disruption of the normally tiny 4-fold pores between the ferritin subunits because of unraveling of the C-termini into multiple polypeptide conformations. This structural alteration causes attenuated net iron incorporation leading to cellular iron mishandling, ferritin aggregation, and oxidative damage at physiological concentrations of iron and ascorbate. A transgenic murine model parallels several features of HF, including a progressive neurological phenotype, ferritin IB formation, and misregulation of iron metabolism. These studies provide a working hypothesis for the pathogenesis of HF by implicating (1) a loss of normal ferritin function that triggers iron accumulation and overproduction of ferritin polypeptides, and (2) a gain of toxic function through radical production, ferritin aggregation, and oxidative stress. Importantly, the finding that ferritin aggregation can be reversed by iron chelators and oxidative damage can be inhibited by radical trapping may be used for clinical investigation. This work provides new insights into the role of abnormal iron metabolism in neurodegeneration.

DOI: 10.3389/fnagi.2013.00032
PubMed: 23908629


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23908629

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Abnormal iron homeostasis and neurodegeneration.</title>
<author>
<name sortKey="Muhoberac, Barry B" sort="Muhoberac, Barry B" uniqKey="Muhoberac B" first="Barry B" last="Muhoberac">Barry B. Muhoberac</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis Indianapolis, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vidal, Ruben" sort="Vidal, Ruben" uniqKey="Vidal R" first="Ruben" last="Vidal">Ruben Vidal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23908629</idno>
<idno type="pmid">23908629</idno>
<idno type="doi">10.3389/fnagi.2013.00032</idno>
<idno type="wicri:Area/PubMed/Corpus">001C35</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C35</idno>
<idno type="wicri:Area/PubMed/Curation">001C35</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001C35</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C09</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Abnormal iron homeostasis and neurodegeneration.</title>
<author>
<name sortKey="Muhoberac, Barry B" sort="Muhoberac, Barry B" uniqKey="Muhoberac B" first="Barry B" last="Muhoberac">Barry B. Muhoberac</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis Indianapolis, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vidal, Ruben" sort="Vidal, Ruben" uniqKey="Vidal R" first="Ruben" last="Vidal">Ruben Vidal</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in aging neuroscience</title>
<idno type="ISSN">1663-4365</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abnormal iron metabolism is observed in many neurodegenerative diseases, however, only two have shown dysregulation of brain iron homeostasis as the primary cause of neurodegeneration. Herein, we review one of these - hereditary ferritinopathy (HF) or neuroferritinopathy, which is an autosomal dominant, adult onset degenerative disease caused by mutations in the ferritin light chain (FTL) gene. HF has a clinical phenotype characterized by a progressive movement disorder, behavioral disturbances, and cognitive impairment. The main pathologic findings are cystic cavitation of the basal ganglia, the presence of ferritin inclusion bodies (IBs), and substantial iron deposition. Mutant FTL subunits have altered sequence and length but assemble into soluble 24-mers that are ultrastructurally indistinguishable from those of the wild type. Crystallography shows substantial localized disruption of the normally tiny 4-fold pores between the ferritin subunits because of unraveling of the C-termini into multiple polypeptide conformations. This structural alteration causes attenuated net iron incorporation leading to cellular iron mishandling, ferritin aggregation, and oxidative damage at physiological concentrations of iron and ascorbate. A transgenic murine model parallels several features of HF, including a progressive neurological phenotype, ferritin IB formation, and misregulation of iron metabolism. These studies provide a working hypothesis for the pathogenesis of HF by implicating (1) a loss of normal ferritin function that triggers iron accumulation and overproduction of ferritin polypeptides, and (2) a gain of toxic function through radical production, ferritin aggregation, and oxidative stress. Importantly, the finding that ferritin aggregation can be reversed by iron chelators and oxidative damage can be inhibited by radical trapping may be used for clinical investigation. This work provides new insights into the role of abnormal iron metabolism in neurodegeneration. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23908629</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1663-4365</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in aging neuroscience</Title>
<ISOAbbreviation>Front Aging Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Abnormal iron homeostasis and neurodegeneration.</ArticleTitle>
<Pagination>
<MedlinePgn>32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnagi.2013.00032</ELocationID>
<Abstract>
<AbstractText>Abnormal iron metabolism is observed in many neurodegenerative diseases, however, only two have shown dysregulation of brain iron homeostasis as the primary cause of neurodegeneration. Herein, we review one of these - hereditary ferritinopathy (HF) or neuroferritinopathy, which is an autosomal dominant, adult onset degenerative disease caused by mutations in the ferritin light chain (FTL) gene. HF has a clinical phenotype characterized by a progressive movement disorder, behavioral disturbances, and cognitive impairment. The main pathologic findings are cystic cavitation of the basal ganglia, the presence of ferritin inclusion bodies (IBs), and substantial iron deposition. Mutant FTL subunits have altered sequence and length but assemble into soluble 24-mers that are ultrastructurally indistinguishable from those of the wild type. Crystallography shows substantial localized disruption of the normally tiny 4-fold pores between the ferritin subunits because of unraveling of the C-termini into multiple polypeptide conformations. This structural alteration causes attenuated net iron incorporation leading to cellular iron mishandling, ferritin aggregation, and oxidative damage at physiological concentrations of iron and ascorbate. A transgenic murine model parallels several features of HF, including a progressive neurological phenotype, ferritin IB formation, and misregulation of iron metabolism. These studies provide a working hypothesis for the pathogenesis of HF by implicating (1) a loss of normal ferritin function that triggers iron accumulation and overproduction of ferritin polypeptides, and (2) a gain of toxic function through radical production, ferritin aggregation, and oxidative stress. Importantly, the finding that ferritin aggregation can be reversed by iron chelators and oxidative damage can be inhibited by radical trapping may be used for clinical investigation. This work provides new insights into the role of abnormal iron metabolism in neurodegeneration. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muhoberac</LastName>
<ForeName>Barry B</ForeName>
<Initials>BB</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vidal</LastName>
<ForeName>Ruben</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 NS050227</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS063056</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Aging Neurosci</MedlineTA>
<NlmUniqueID>101525824</NlmUniqueID>
<ISSNLinking>1663-4365</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ferritin</Keyword>
<Keyword MajorTopicYN="N">inclusion bodies</Keyword>
<Keyword MajorTopicYN="N">iron</Keyword>
<Keyword MajorTopicYN="N">neurodegeneration</Keyword>
<Keyword MajorTopicYN="N">neuroferritinopathy</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23908629</ArticleId>
<ArticleId IdType="doi">10.3389/fnagi.2013.00032</ArticleId>
<ArticleId IdType="pmc">PMC3726993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Top Magn Reson Imaging. 2006 Feb;17(1):5-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2010 Jul 19;479(1):44-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20478358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2008 Apr 15;70(16 Pt 2):1493-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18413574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2009 Aug 15;24(11):1676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19514068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Sep;62:76-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1800(8):706-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2007 Jan;130(Pt 1):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Jan 2;28(1):60-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jul 15;267(20):14077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1629207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2009 Jun;132(Pt 6):e109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 May 1;52(9):1692-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22348978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2011 Aug;17(4):389-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21666063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2008 Apr 29;70(18):1614-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 15;285(3):1950-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2005 Jan;109(1):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15645266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2005 Aug 23;65(4):603-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2009 Feb 15;24(3):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19117339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Mar 25;259(6):3620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6323433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 2005 Apr;64(4):280-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15835264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Neurosurg Psychiatry. 1997 Aug;63(2):196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9285458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 14;283(46):31679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Dec;273(23):5428-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17116244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2009 May;109(4):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurodegener. 2010 Nov 10;5:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21067605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Apr 6;13(4):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21459321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Aug;28(4):350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 2004 Aug;63(8):787-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15330334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Apr;1812(4):544-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 2004 Apr;63(4):363-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15099026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2004 Nov;5(11):863-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Vidal, Ruben" sort="Vidal, Ruben" uniqKey="Vidal R" first="Ruben" last="Vidal">Ruben Vidal</name>
</noCountry>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Muhoberac, Barry B" sort="Muhoberac, Barry B" uniqKey="Muhoberac B" first="Barry B" last="Muhoberac">Barry B. Muhoberac</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23908629
   |texte=   Abnormal iron homeostasis and neurodegeneration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23908629" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021