Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.

Identifieur interne : 001C08 ( PubMed/Checkpoint ); précédent : 001C07; suivant : 001C09

Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.

Auteurs : K M Small [États-Unis] ; S. Nag [États-Unis] ; S S Mokha [États-Unis]

Source :

RBID : pubmed:24452062

Descripteurs français

English descriptors

Abstract

To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. E2BSA [β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin] (0.5mM), a membrane impermeant analog of estradiol, injected intrathecally immediately prior to orphanin FQ (OFQ;10 nmol), the endogenous ligand for the ORL1 receptor, abolished OFQ's antinociceptive effect in both male and ovariectomized (OVX) female rats, assessed using the heat-induced tail-flick assay. This effect was not altered by protein synthesis inhibitor, anisomycin (125 μg), given intrathecally 15 min prior to E2BSA and OFQ. Intrathecal application of selective receptor agonists permitted the relative contributions of various estrogen receptors in mediating this blockade of the antinociceptive response of OFQ. Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females.

DOI: 10.1016/j.neuroscience.2013.10.034
PubMed: 24452062


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24452062

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.</title>
<author>
<name sortKey="Small, K M" sort="Small, K M" uniqKey="Small K" first="K M" last="Small">K M Small</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nag, S" sort="Nag, S" uniqKey="Nag S" first="S" last="Nag">S. Nag</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mokha, S S" sort="Mokha, S S" uniqKey="Mokha S" first="S S" last="Mokha">S S Mokha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA. Electronic address: smokha@mmc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24452062</idno>
<idno type="pmid">24452062</idno>
<idno type="doi">10.1016/j.neuroscience.2013.10.034</idno>
<idno type="wicri:Area/PubMed/Corpus">001A87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A87</idno>
<idno type="wicri:Area/PubMed/Curation">001A87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A87</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C08</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.</title>
<author>
<name sortKey="Small, K M" sort="Small, K M" uniqKey="Small K" first="K M" last="Small">K M Small</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nag, S" sort="Nag, S" uniqKey="Nag S" first="S" last="Nag">S. Nag</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mokha, S S" sort="Mokha, S S" uniqKey="Mokha S" first="S S" last="Mokha">S S Mokha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA. Electronic address: smokha@mmc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuroscience</title>
<idno type="eISSN">1873-7544</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Blotting, Western</term>
<term>Cell Membrane (metabolism)</term>
<term>Extracellular Signal-Regulated MAP Kinases (metabolism)</term>
<term>Female</term>
<term>Male</term>
<term>Ovariectomy</term>
<term>Pain (metabolism)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Receptors, Estrogen (metabolism)</term>
<term>Receptors, Opioid (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Douleur (métabolisme)</term>
<term>Extracellular Signal-Regulated MAP Kinases (métabolisme)</term>
<term>Femelle</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Mâle</term>
<term>Ovariectomie</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Récepteurs aux opioïdes (métabolisme)</term>
<term>Récepteurs des oestrogènes (métabolisme)</term>
<term>Technique de Western</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Receptors, Estrogen</term>
<term>Receptors, Opioid</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Pain</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Douleur</term>
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Membrane cellulaire</term>
<term>Récepteurs aux opioïdes</term>
<term>Récepteurs des oestrogènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blotting, Western</term>
<term>Female</term>
<term>Male</term>
<term>Ovariectomy</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Mâle</term>
<term>Ovariectomie</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. E2BSA [β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin] (0.5mM), a membrane impermeant analog of estradiol, injected intrathecally immediately prior to orphanin FQ (OFQ;10 nmol), the endogenous ligand for the ORL1 receptor, abolished OFQ's antinociceptive effect in both male and ovariectomized (OVX) female rats, assessed using the heat-induced tail-flick assay. This effect was not altered by protein synthesis inhibitor, anisomycin (125 μg), given intrathecally 15 min prior to E2BSA and OFQ. Intrathecal application of selective receptor agonists permitted the relative contributions of various estrogen receptors in mediating this blockade of the antinociceptive response of OFQ. Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24452062</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-7544</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>255</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Neuroscience</Title>
<ISOAbbreviation>Neuroscience</ISOAbbreviation>
</Journal>
<ArticleTitle>Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.</ArticleTitle>
<Pagination>
<MedlinePgn>177-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroscience.2013.10.034</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0306-4522(13)00887-7</ELocationID>
<Abstract>
<AbstractText>To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. E2BSA [β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin] (0.5mM), a membrane impermeant analog of estradiol, injected intrathecally immediately prior to orphanin FQ (OFQ;10 nmol), the endogenous ligand for the ORL1 receptor, abolished OFQ's antinociceptive effect in both male and ovariectomized (OVX) female rats, assessed using the heat-induced tail-flick assay. This effect was not altered by protein synthesis inhibitor, anisomycin (125 μg), given intrathecally 15 min prior to E2BSA and OFQ. Intrathecal application of selective receptor agonists permitted the relative contributions of various estrogen receptors in mediating this blockade of the antinociceptive response of OFQ. Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females.</AbstractText>
<CopyrightInformation>Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Small</LastName>
<ForeName>K M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nag</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mokha</LastName>
<ForeName>S S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA. Electronic address: smokha@mmc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>G12 MD007586</GrantID>
<Acronym>MD</Acronym>
<Agency>NIMHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>SC1 NS078778</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>SC1NS078778</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R25 GM59994</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R25 GM059994</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroscience</MedlineTA>
<NlmUniqueID>7605074</NlmUniqueID>
<ISSNLinking>0306-4522</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011960">Receptors, Estrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011957">Receptors, Opioid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>DVO6VKD7IJ</RegistryNumber>
<NameOfSubstance UI="C101513">nociceptin receptor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048049">Extracellular Signal-Regulated MAP Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048049" MajorTopicYN="N">Extracellular Signal-Regulated MAP Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010052" MajorTopicYN="N">Ovariectomy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010146" MajorTopicYN="N">Pain</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011960" MajorTopicYN="N">Receptors, Estrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011957" MajorTopicYN="N">Receptors, Opioid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ANOVA</Keyword>
<Keyword MajorTopicYN="N">AUC</Keyword>
<Keyword MajorTopicYN="N">DPN</Keyword>
<Keyword MajorTopicYN="N">E2BSA</Keyword>
<Keyword MajorTopicYN="N">ERK</Keyword>
<Keyword MajorTopicYN="N">G protein-gated inwardly rectifying potassium channels</Keyword>
<Keyword MajorTopicYN="N">GIRK</Keyword>
<Keyword MajorTopicYN="N">GPR30</Keyword>
<Keyword MajorTopicYN="N">Gq-coupled mER</Keyword>
<Keyword MajorTopicYN="N">Gq-mER</Keyword>
<Keyword MajorTopicYN="N">OFQ</Keyword>
<Keyword MajorTopicYN="N">ORL1</Keyword>
<Keyword MajorTopicYN="N">OVX</Keyword>
<Keyword MajorTopicYN="N">PKA</Keyword>
<Keyword MajorTopicYN="N">PKC</Keyword>
<Keyword MajorTopicYN="N">PPT</Keyword>
<Keyword MajorTopicYN="N">TFL</Keyword>
<Keyword MajorTopicYN="N">analysis of variance</Keyword>
<Keyword MajorTopicYN="N">area under the curve</Keyword>
<Keyword MajorTopicYN="N">diarylpropionitrile</Keyword>
<Keyword MajorTopicYN="N">estrogen receptor</Keyword>
<Keyword MajorTopicYN="N">extracellular signal-regulated kinase</Keyword>
<Keyword MajorTopicYN="N">mERs</Keyword>
<Keyword MajorTopicYN="N">membrane estrogen receptors</Keyword>
<Keyword MajorTopicYN="N">opiod receptor-like 1 (ORL1) receptor</Keyword>
<Keyword MajorTopicYN="N">opioid receptor-like 1</Keyword>
<Keyword MajorTopicYN="N">orphanin FQ</Keyword>
<Keyword MajorTopicYN="N">ovariectomized</Keyword>
<Keyword MajorTopicYN="N">pain</Keyword>
<Keyword MajorTopicYN="N">propylpyrazoletriol</Keyword>
<Keyword MajorTopicYN="N">protein kinase A</Keyword>
<Keyword MajorTopicYN="N">protein kinase C</Keyword>
<Keyword MajorTopicYN="N">sex differences</Keyword>
<Keyword MajorTopicYN="N">spinal cord</Keyword>
<Keyword MajorTopicYN="N">tail flick latencies</Keyword>
<Keyword MajorTopicYN="N">β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24452062</ArticleId>
<ArticleId IdType="pii">S0306-4522(13)00887-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroscience.2013.10.034</ArticleId>
<ArticleId IdType="pmc">PMC3900883</ArticleId>
<ArticleId IdType="mid">NIHMS534959</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1995 Oct 12;377(6549):532-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7566152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Nov 3;270(5237):792-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7481766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Mar 15;15(6):1292-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8635462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 1996 Aug;118(8):1875-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8864517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1996 Nov;2(11):1248-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8898754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 1996 Sep 2;7(13):2092-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 1996 Sep 2;7(13):2125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Mol Brain Res. 1997 Apr;45(1):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9105677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 1999 Feb;13(2):307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Sci. 1997 Sep;20(3):371-80; discussion 435-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1999 Jul 24;835(2):241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10415379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2005 Feb;146(2):624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2005 Jul 25;488(2):152-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15924341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2005 Oct;117(3):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16150547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2006 Mar;290(3):C852-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2006 Mar;316(3):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Apr;2(4):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 May 24;26(21):5649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2006 Jul;24(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16836642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2006 Oct 16;173(2):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2006 Nov 3;142(4):1255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16934408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Nov 22;26(47):12251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Dec 13;26(50):13048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17167094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2007 Mar 2;145(1):350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Jul;148(7):3236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2007 Nov;132 Suppl 1:S26-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2008 Feb 6;431(3):201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosignals. 2008;16(2-3):140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18253054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2008;70:165-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18271749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pain. 2008 May;12(4):472-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17869144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2008 May;29(2):219-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2008 Jun 2;153(4):1268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2008 Jul 17;154(4):1562-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Regul Pept. 2008 Nov 29;151(1-3):43-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18588920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2008 Dec;116(12):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Dec 24;28(52):14007-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2009 May 15;87(7):1610-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19125412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cephalalgia. 2009 May;29(5):520-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Jun;5(6):421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E416-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19531642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Learn Mem. 2009 Sep;16(9):514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2009 Nov;23(11):1815-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19749156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2009 Dec;20(10):477-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2010 Jan;148(1):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19945794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2010 Apr;149(1):152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20171009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2010 Oct;151(10):4926-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2010 Nov 1;18(21):7675-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20875743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2010 Dec;151(3):806-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2011 Mar;25(3):377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pain. 2011;7:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21722369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2011 Sep;152(9):2117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Aug 17;31(33):11836-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Sep 28;287(40):33268-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2012 Oct;33(4):342-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22981653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2012 Dec;13(12):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23165262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2012 Dec;26(12):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23051593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 1999 Dec;2(12):1114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Biobehav Rev. 2000 Jun;24(4):485-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10817845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2000 Jun 9;867(1-2):200-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 2000 Jul;21(7):1037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2000 Dec;75(6):2277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2001;105(2):489-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11672614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12496346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):31-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2003;118(3):769-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12710984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2003 Jun;17(11):2381-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12814369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2003 Sep;90(3):1671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 22;23(29):9529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2003 Dec;26(12):696-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2003 Dec;106(3):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Behav. 1976 Dec;17(6):1031-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14677603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2003 Dec;1007:6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14993035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pain. 2004 Oct;8(5):413-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15324773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1967 Jul 10;242(13):3226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6027796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Behav. 1973 Mar;10(3):555-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4736141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1974 Jun;94(6):1704-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4857496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1989 May 22;100(1-3):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2548127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1990 May 18;113(1):47-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1992 Jul;12(7):2745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1319480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Neural Biol. 1993 Jan;59(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8442732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Mar 14;341(1):33-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8137918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Jun 27;347(2-3):284-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8034019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1995 Mar;9(5):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Small, K M" sort="Small, K M" uniqKey="Small K" first="K M" last="Small">K M Small</name>
</region>
<name sortKey="Mokha, S S" sort="Mokha, S S" uniqKey="Mokha S" first="S S" last="Mokha">S S Mokha</name>
<name sortKey="Nag, S" sort="Nag, S" uniqKey="Nag S" first="S" last="Nag">S. Nag</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24452062
   |texte=   Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24452062" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021