Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.

Identifieur interne : 001893 ( PubMed/Checkpoint ); précédent : 001892; suivant : 001894

Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.

Auteurs : Yan G. Fulcher [États-Unis] ; Raghavendar Reddy Sanganna Gari ; Nathan C. Frey ; Fuming Zhang ; Robert J. Linhardt ; Gavin M. King ; Steven R. Van Doren

Source :

RBID : pubmed:24495220

Descripteurs français

English descriptors

Abstract

Activation by glycosaminoglycans (GAGs) is an emerging trend among extracellular proteases important in disease. ProMMP-7, the zymogen of a matrix metalloproteinase secreted by mucosal epithelial and tumor cells, is activated at their surfaces by sulfated GAGs, but how? ProMMP-7 is activated in trans by representative heparin oligosaccharides in a length-dependent manner, with a large jump in activation at lengths of 16 monosaccharides. Imaging by atomic force microscopy visualized small complexes of proMMP-7 molecules linked by 8-mer lengths of heparinoids and extended assembles formed with 16-mer lengths of heparin. Complexes of proMMP-7 with polydisperse heparin or heparan sulfate were more diverse. Heparinoids evidently accelerate activation by tethering multiple proMMP-7 molecules together for proteolytic attack among neighbors. Removal of either the prodomain or C-terminal peptide sequence of KRSNSRKK from MMP-7 prevents formation of the long arrays induced by heparin 16-mers or heparan sulfate. The role of the C-terminus in activation assays suggests it contributes to remote, allosteric binding of GAGs. Enhancement of proteolytic velocity of MMP-by GAGs indicates them to be effectors of V-type allostery. GAGs from proteoglycans appear to assemble proMMP-7 molecules for activation, an event preceding its tumorigenic or antibacterial proteolytic activities at cell surfaces.

DOI: 10.1021/cb400898t
PubMed: 24495220


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24495220

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.</title>
<author>
<name sortKey="Fulcher, Yan G" sort="Fulcher, Yan G" uniqKey="Fulcher Y" first="Yan G" last="Fulcher">Yan G. Fulcher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and ‡Department of Physics and Astronomy, University of Missouri , Columbia, Missouri 65211, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and ‡Department of Physics and Astronomy, University of Missouri , Columbia, Missouri 65211</wicri:regionArea>
<wicri:noRegion>Missouri 65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanganna Gari, Raghavendar Reddy" sort="Sanganna Gari, Raghavendar Reddy" uniqKey="Sanganna Gari R" first="Raghavendar Reddy" last="Sanganna Gari">Raghavendar Reddy Sanganna Gari</name>
</author>
<author>
<name sortKey="Frey, Nathan C" sort="Frey, Nathan C" uniqKey="Frey N" first="Nathan C" last="Frey">Nathan C. Frey</name>
</author>
<author>
<name sortKey="Zhang, Fuming" sort="Zhang, Fuming" uniqKey="Zhang F" first="Fuming" last="Zhang">Fuming Zhang</name>
</author>
<author>
<name sortKey="Linhardt, Robert J" sort="Linhardt, Robert J" uniqKey="Linhardt R" first="Robert J" last="Linhardt">Robert J. Linhardt</name>
</author>
<author>
<name sortKey="King, Gavin M" sort="King, Gavin M" uniqKey="King G" first="Gavin M" last="King">Gavin M. King</name>
</author>
<author>
<name sortKey="Van Doren, Steven R" sort="Van Doren, Steven R" uniqKey="Van Doren S" first="Steven R" last="Van Doren">Steven R. Van Doren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24495220</idno>
<idno type="pmid">24495220</idno>
<idno type="doi">10.1021/cb400898t</idno>
<idno type="wicri:Area/PubMed/Corpus">001A65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A65</idno>
<idno type="wicri:Area/PubMed/Curation">001A65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A65</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001893</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001893</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.</title>
<author>
<name sortKey="Fulcher, Yan G" sort="Fulcher, Yan G" uniqKey="Fulcher Y" first="Yan G" last="Fulcher">Yan G. Fulcher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and ‡Department of Physics and Astronomy, University of Missouri , Columbia, Missouri 65211, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and ‡Department of Physics and Astronomy, University of Missouri , Columbia, Missouri 65211</wicri:regionArea>
<wicri:noRegion>Missouri 65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanganna Gari, Raghavendar Reddy" sort="Sanganna Gari, Raghavendar Reddy" uniqKey="Sanganna Gari R" first="Raghavendar Reddy" last="Sanganna Gari">Raghavendar Reddy Sanganna Gari</name>
</author>
<author>
<name sortKey="Frey, Nathan C" sort="Frey, Nathan C" uniqKey="Frey N" first="Nathan C" last="Frey">Nathan C. Frey</name>
</author>
<author>
<name sortKey="Zhang, Fuming" sort="Zhang, Fuming" uniqKey="Zhang F" first="Fuming" last="Zhang">Fuming Zhang</name>
</author>
<author>
<name sortKey="Linhardt, Robert J" sort="Linhardt, Robert J" uniqKey="Linhardt R" first="Robert J" last="Linhardt">Robert J. Linhardt</name>
</author>
<author>
<name sortKey="King, Gavin M" sort="King, Gavin M" uniqKey="King G" first="Gavin M" last="King">Gavin M. King</name>
</author>
<author>
<name sortKey="Van Doren, Steven R" sort="Van Doren, Steven R" uniqKey="Van Doren S" first="Steven R" last="Van Doren">Steven R. Van Doren</name>
</author>
</analytic>
<series>
<title level="j">ACS chemical biology</title>
<idno type="eISSN">1554-8937</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allosteric Regulation</term>
<term>Animals</term>
<term>Enzyme Activation</term>
<term>Heparinoids (pharmacology)</term>
<term>Humans</term>
<term>Matrix Metalloproteinase 7 (genetics)</term>
<term>Matrix Metalloproteinase 7 (metabolism)</term>
<term>Microscopy, Atomic Force</term>
<term>Models, Biological</term>
<term>Mucous Membrane (metabolism)</term>
<term>Neoplasms (metabolism)</term>
<term>Peptide Hydrolases (drug effects)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Protein Binding</term>
<term>Rats</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Humains</term>
<term>Héparinoïde (pharmacologie)</term>
<term>Liaison aux protéines</term>
<term>Matrix metalloproteinase 7 (génétique)</term>
<term>Matrix metalloproteinase 7 (métabolisme)</term>
<term>Microscopie à force atomique</term>
<term>Modèles biologiques</term>
<term>Muqueuse (métabolisme)</term>
<term>Peptide hydrolases ()</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Propriétés de surface</term>
<term>Rats</term>
<term>Régulation allostérique</term>
<term>Tumeurs (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Matrix Metalloproteinase 7</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Matrix Metalloproteinase 7</term>
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Heparinoids</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Matrix metalloproteinase 7</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mucous Membrane</term>
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Matrix metalloproteinase 7</term>
<term>Muqueuse</term>
<term>Peptide hydrolases</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Héparinoïde</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allosteric Regulation</term>
<term>Animals</term>
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Microscopy, Atomic Force</term>
<term>Models, Biological</term>
<term>Protein Binding</term>
<term>Rats</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Microscopie à force atomique</term>
<term>Modèles biologiques</term>
<term>Peptide hydrolases</term>
<term>Propriétés de surface</term>
<term>Rats</term>
<term>Régulation allostérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Activation by glycosaminoglycans (GAGs) is an emerging trend among extracellular proteases important in disease. ProMMP-7, the zymogen of a matrix metalloproteinase secreted by mucosal epithelial and tumor cells, is activated at their surfaces by sulfated GAGs, but how? ProMMP-7 is activated in trans by representative heparin oligosaccharides in a length-dependent manner, with a large jump in activation at lengths of 16 monosaccharides. Imaging by atomic force microscopy visualized small complexes of proMMP-7 molecules linked by 8-mer lengths of heparinoids and extended assembles formed with 16-mer lengths of heparin. Complexes of proMMP-7 with polydisperse heparin or heparan sulfate were more diverse. Heparinoids evidently accelerate activation by tethering multiple proMMP-7 molecules together for proteolytic attack among neighbors. Removal of either the prodomain or C-terminal peptide sequence of KRSNSRKK from MMP-7 prevents formation of the long arrays induced by heparin 16-mers or heparan sulfate. The role of the C-terminus in activation assays suggests it contributes to remote, allosteric binding of GAGs. Enhancement of proteolytic velocity of MMP-by GAGs indicates them to be effectors of V-type allostery. GAGs from proteoglycans appear to assemble proMMP-7 molecules for activation, an event preceding its tumorigenic or antibacterial proteolytic activities at cell surfaces. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24495220</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8937</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>ACS chemical biology</Title>
<ISOAbbreviation>ACS Chem. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.</ArticleTitle>
<Pagination>
<MedlinePgn>957-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/cb400898t</ELocationID>
<Abstract>
<AbstractText>Activation by glycosaminoglycans (GAGs) is an emerging trend among extracellular proteases important in disease. ProMMP-7, the zymogen of a matrix metalloproteinase secreted by mucosal epithelial and tumor cells, is activated at their surfaces by sulfated GAGs, but how? ProMMP-7 is activated in trans by representative heparin oligosaccharides in a length-dependent manner, with a large jump in activation at lengths of 16 monosaccharides. Imaging by atomic force microscopy visualized small complexes of proMMP-7 molecules linked by 8-mer lengths of heparinoids and extended assembles formed with 16-mer lengths of heparin. Complexes of proMMP-7 with polydisperse heparin or heparan sulfate were more diverse. Heparinoids evidently accelerate activation by tethering multiple proMMP-7 molecules together for proteolytic attack among neighbors. Removal of either the prodomain or C-terminal peptide sequence of KRSNSRKK from MMP-7 prevents formation of the long arrays induced by heparin 16-mers or heparan sulfate. The role of the C-terminus in activation assays suggests it contributes to remote, allosteric binding of GAGs. Enhancement of proteolytic velocity of MMP-by GAGs indicates them to be effectors of V-type allostery. GAGs from proteoglycans appear to assemble proMMP-7 molecules for activation, an event preceding its tumorigenic or antibacterial proteolytic activities at cell surfaces. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fulcher</LastName>
<ForeName>Yan G</ForeName>
<Initials>YG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and ‡Department of Physics and Astronomy, University of Missouri , Columbia, Missouri 65211, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanganna Gari</LastName>
<ForeName>Raghavendar Reddy</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frey</LastName>
<ForeName>Nathan C</ForeName>
<Initials>NC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Fuming</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Linhardt</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Gavin M</ForeName>
<Initials>GM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van Doren</LastName>
<ForeName>Steven R</ForeName>
<Initials>SR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM057289</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR022341</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM057289</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR022341</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Chem Biol</MedlineTA>
<NlmUniqueID>101282906</NlmUniqueID>
<ISSNLinking>1554-8929</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006496">Heparinoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.23</RegistryNumber>
<NameOfSubstance UI="D020783">Matrix Metalloproteinase 7</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000494" MajorTopicYN="N">Allosteric Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006496" MajorTopicYN="N">Heparinoids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020783" MajorTopicYN="N">Matrix Metalloproteinase 7</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009092" MajorTopicYN="N">Mucous Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24495220</ArticleId>
<ArticleId IdType="doi">10.1021/cb400898t</ArticleId>
<ArticleId IdType="pmc">PMC4063349</ArticleId>
<ArticleId IdType="mid">NIHMS563514</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 May 3;277(18):16022-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Feb 1;16(3):307-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11825873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 13;279(7):5470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 May 15;328(2):166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 Sep;11(9):857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15311269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Jul 10;257(13):7360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7085630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Sep;80(18):5460-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6577437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Apr 5;266(10):6353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2007588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Aug 1;293 ( Pt 3):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8352752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Dec 1;218(2):431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8269931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Dec 16;36(50):16019-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 9;273(2):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9422744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 1;286(5437):113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10506557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Sep 14;38(37):12187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Feb 14;579(5):1285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2006 May;27(5):1113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16474169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 May 30;45(21):6703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16716081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2006 Aug 21;95(4):506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Mar;64(5):610-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 May 1;403(3):553-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Jul 15;67(14):6760-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17638887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2007 Dec 1;371(1):43-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Nov 7;129(44):13566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17929919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):33076-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Feb 15;366(3):862-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Oct 31;383(1):78-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(8):e6565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19668337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Oct 9;284(41):27924-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19654318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Dec;276(24):7343-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19919557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Jan 22;395(3):504-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19895822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jan;278(1):28-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 31;285(53):41270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21041295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 May;280(10):2332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2013 Jun;27(6):2342-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Oct 24;39(42):13068-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 11;275(6):4183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10660581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1830(11):5287-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Jan 15;61(2):577-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2001 Jun 1;293(1):38-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11373076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Oct 1;62(19):5559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Frey, Nathan C" sort="Frey, Nathan C" uniqKey="Frey N" first="Nathan C" last="Frey">Nathan C. Frey</name>
<name sortKey="King, Gavin M" sort="King, Gavin M" uniqKey="King G" first="Gavin M" last="King">Gavin M. King</name>
<name sortKey="Linhardt, Robert J" sort="Linhardt, Robert J" uniqKey="Linhardt R" first="Robert J" last="Linhardt">Robert J. Linhardt</name>
<name sortKey="Sanganna Gari, Raghavendar Reddy" sort="Sanganna Gari, Raghavendar Reddy" uniqKey="Sanganna Gari R" first="Raghavendar Reddy" last="Sanganna Gari">Raghavendar Reddy Sanganna Gari</name>
<name sortKey="Van Doren, Steven R" sort="Van Doren, Steven R" uniqKey="Van Doren S" first="Steven R" last="Van Doren">Steven R. Van Doren</name>
<name sortKey="Zhang, Fuming" sort="Zhang, Fuming" uniqKey="Zhang F" first="Fuming" last="Zhang">Fuming Zhang</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Fulcher, Yan G" sort="Fulcher, Yan G" uniqKey="Fulcher Y" first="Yan G" last="Fulcher">Yan G. Fulcher</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001893 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001893 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24495220
   |texte=   Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24495220" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021