Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MSC: a metagenomic sequence classification algorithm.

Identifieur interne : 000488 ( PubMed/Checkpoint ); précédent : 000487; suivant : 000489

MSC: a metagenomic sequence classification algorithm.

Auteurs : Subrata Saha [États-Unis] ; Jethro Johnson [États-Unis] ; Soumitra Pal [États-Unis] ; George M. Weinstock [États-Unis] ; Sanguthevar Rajasekaran [États-Unis]

Source :

RBID : pubmed:30649204

Abstract

Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.

DOI: 10.1093/bioinformatics/bty1071
PubMed: 30649204


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30649204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MSC: a metagenomic sequence classification algorithm.</title>
<author>
<name sortKey="Saha, Subrata" sort="Saha, Subrata" uniqKey="Saha S" first="Subrata" last="Saha">Subrata Saha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Jethro" sort="Johnson, Jethro" uniqKey="Johnson J" first="Jethro" last="Johnson">Jethro Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Jackson Laboratory for Genomic Medicine, Farmington, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pal, Soumitra" sort="Pal, Soumitra" uniqKey="Pal S" first="Soumitra" last="Pal">Soumitra Pal</name>
<affiliation wicri:level="2">
<nlm:affiliation>National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weinstock, George M" sort="Weinstock, George M" uniqKey="Weinstock G" first="George M" last="Weinstock">George M. Weinstock</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Jackson Laboratory for Genomic Medicine, Farmington, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rajasekaran, Sanguthevar" sort="Rajasekaran, Sanguthevar" uniqKey="Rajasekaran S" first="Sanguthevar" last="Rajasekaran">Sanguthevar Rajasekaran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computer Science and Engineering Department, University of Connecticut, Storrs, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30649204</idno>
<idno type="pmid">30649204</idno>
<idno type="doi">10.1093/bioinformatics/bty1071</idno>
<idno type="wicri:Area/PubMed/Corpus">000670</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000670</idno>
<idno type="wicri:Area/PubMed/Curation">000670</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000670</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000488</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000488</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MSC: a metagenomic sequence classification algorithm.</title>
<author>
<name sortKey="Saha, Subrata" sort="Saha, Subrata" uniqKey="Saha S" first="Subrata" last="Saha">Subrata Saha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Jethro" sort="Johnson, Jethro" uniqKey="Johnson J" first="Jethro" last="Johnson">Jethro Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Jackson Laboratory for Genomic Medicine, Farmington, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pal, Soumitra" sort="Pal, Soumitra" uniqKey="Pal S" first="Soumitra" last="Pal">Soumitra Pal</name>
<affiliation wicri:level="2">
<nlm:affiliation>National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weinstock, George M" sort="Weinstock, George M" uniqKey="Weinstock G" first="George M" last="Weinstock">George M. Weinstock</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Jackson Laboratory for Genomic Medicine, Farmington, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rajasekaran, Sanguthevar" sort="Rajasekaran, Sanguthevar" uniqKey="Rajasekaran S" first="Sanguthevar" last="Rajasekaran">Sanguthevar Rajasekaran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computer Science and Engineering Department, University of Connecticut, Storrs, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioinformatics (Oxford, England)</title>
<idno type="eISSN">1367-4811</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">30649204</PMID>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1367-4811</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2019</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Bioinformatics (Oxford, England)</Title>
<ISOAbbreviation>Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>MSC: a metagenomic sequence classification algorithm.</ArticleTitle>
<Pagination>
<MedlinePgn>2932-2940</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/bioinformatics/bty1071</ELocationID>
<Abstract>
<AbstractText Label="MOTIVATION" NlmCategory="BACKGROUND">Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Microbiome researchers are generally interested in two objectives of a taxonomic classifier: (i) to detect prevalence, i.e. the taxa present in a sample, and (ii) to estimate their relative abundances. MSC is primarily designed to detect prevalence and experimental results show that MSC is indeed a more effective and efficient algorithm compared to the other state-of-the-art algorithms in terms of accuracy, memory and runtime. Moreover, MSC outputs an approximate estimate of the abundances.</AbstractText>
<AbstractText Label="AVAILABILITY AND IMPLEMENTATION" NlmCategory="METHODS">The implementations are freely available for non-commercial purposes. They can be downloaded from https://drive.google.com/open?id=1XirkAamkQ3ltWvI1W1igYQFusp9DHtVl.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saha</LastName>
<ForeName>Subrata</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Jethro</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pal</LastName>
<ForeName>Soumitra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weinstock</LastName>
<ForeName>George M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajasekaran</LastName>
<ForeName>Sanguthevar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA034196</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Bioinformatics</MedlineTA>
<NlmUniqueID>9808944</NlmUniqueID>
<ISSNLinking>1367-4803</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30649204</ArticleId>
<ArticleId IdType="pii">5288772</ArticleId>
<ArticleId IdType="doi">10.1093/bioinformatics/bty1071</ArticleId>
<ArticleId IdType="pmc">PMC6931357</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2016 Apr 13;7:11257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27071849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ISME J. 2017 Apr;11(4):853-862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28072420</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2013 Sep 15;29(18):2253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23828782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2008 Aug 15;24(16):1757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18567917</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mSystems. 2016 Jun 7;1(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27822531</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Jan 18;6:19233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26778510</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Biol. 2002;9(2):225-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2016 Dec 15;32(24):3823-3825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Oral Microbiol. 2012 Jun;27(3):182-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22520388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2013 Dec;10(12):1196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24141494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(12):e94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434876</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2017 Jul 15;33(14):2082-2088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28334086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2015 Mar 25;16:236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genes Dis. 2017 Sep;4(3):138-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30197908</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Mar 13;9(3):e91784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24626336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2014 Mar 03;15(3):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24580807</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Oct;12(10):902-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26418763</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2007 Mar;17(3):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2012 May 10;13:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22574964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2009 Dec;19(12):2317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19819907</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2017 Dec 1;33(23):3740-3748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28961782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26553804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Genet. 2017 Oct;63(5):819-829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28401295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2009 Dec 15;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
<li>Maryland</li>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Saha, Subrata" sort="Saha, Subrata" uniqKey="Saha S" first="Subrata" last="Saha">Subrata Saha</name>
</region>
<name sortKey="Johnson, Jethro" sort="Johnson, Jethro" uniqKey="Johnson J" first="Jethro" last="Johnson">Jethro Johnson</name>
<name sortKey="Pal, Soumitra" sort="Pal, Soumitra" uniqKey="Pal S" first="Soumitra" last="Pal">Soumitra Pal</name>
<name sortKey="Rajasekaran, Sanguthevar" sort="Rajasekaran, Sanguthevar" uniqKey="Rajasekaran S" first="Sanguthevar" last="Rajasekaran">Sanguthevar Rajasekaran</name>
<name sortKey="Weinstock, George M" sort="Weinstock, George M" uniqKey="Weinstock G" first="George M" last="Weinstock">George M. Weinstock</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000488 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000488 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:30649204
   |texte=   MSC: a metagenomic sequence classification algorithm.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:30649204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021