Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting.

Identifieur interne : 002150 ( Ncbi/Merge ); précédent : 002149; suivant : 002151

Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting.

Auteurs : Jean K. Millet ; Tiffany Tang [États-Unis] ; Lakshmi Nathan [États-Unis] ; Javier A. Jaimes [États-Unis] ; Hung-Lun Hsu ; Susan Daniel [États-Unis] ; Gary R. Whittaker [États-Unis]

Source :

RBID : pubmed:30882796

Descripteurs français

English descriptors

Abstract

The protocol aims to generate coronavirus (CoV) spike (S) fusion protein pseudotyped particles with a murine leukemia virus (MLV) core and luciferase reporter, using a simple transfection procedure of the widely available HEK-293T cell line. Once formed and released from producer cells, these pseudovirions incorporate a luciferase reporter gene. Since they only contain the heterologous coronavirus spike protein on their surface, the particles behave like their native coronavirus counterparts for entry steps. As such, they are the excellent surrogates of native virions for studying viral entry into host cells. Upon successful entry and infection into target cells, the luciferase reporter gets integrated into the host cell genome and is expressed. Using a simple luciferase assay, transduced cells can be easily quantified. An important advantage of the procedure is that it can be performed in biosafety level 2 (BSL-2) facilities instead of BSL-3 facilities required for work with highly pathogenic coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Another benefit comes from its versatility as it can be applied to envelope proteins belonging to all three classes of viral fusion proteins, such as the class I influenza hemagglutinin (HA) and Ebola virus glycoprotein (GP), the class II Semliki forest virus E1 protein, or the class III vesicular stomatitis virus G glycoprotein. A limitation of the methodology is that it can only recapitulate virus entry steps mediated by the envelope protein being investigated. For studying other viral life cycle steps, other methods are required. Examples of the many applications these pseudotype particles can be used in include investigation of host cell susceptibility and tropism and testing the effects of virus entry inhibitors to dissect viral entry pathways used.

DOI: 10.3791/59010
PubMed: 30882796

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30882796

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting.</title>
<author>
<name sortKey="Millet, Jean K" sort="Millet, Jean K" uniqKey="Millet J" first="Jean K" last="Millet">Jean K. Millet</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; INRA, Virologie et Immunologie Moléculaires.</nlm:affiliation>
<wicri:noCountry code="subField">Virologie et Immunologie Moléculaires</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tang, Tiffany" sort="Tang, Tiffany" uniqKey="Tang T" first="Tiffany" last="Tang">Tiffany Tang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Nathan, Lakshmi" sort="Nathan, Lakshmi" uniqKey="Nathan L" first="Lakshmi" last="Nathan">Lakshmi Nathan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jaimes, Javier A" sort="Jaimes, Javier A" uniqKey="Jaimes J" first="Javier A" last="Jaimes">Javier A. Jaimes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, College of Agricultural and Life Sciences, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Hung Lun" sort="Hsu, Hung Lun" uniqKey="Hsu H" first="Hung-Lun" last="Hsu">Hung-Lun Hsu</name>
<affiliation>
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University; Horae Gene Therapy Center, University of Massachusetts Medical School.</nlm:affiliation>
<wicri:noCountry code="subField">University of Massachusetts Medical School</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Daniel, Susan" sort="Daniel, Susan" uniqKey="Daniel S" first="Susan" last="Daniel">Susan Daniel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; gary.whittaker@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, College of Veterinary Medicine</wicri:regionArea>
<wicri:noRegion>College of Veterinary Medicine</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30882796</idno>
<idno type="pmid">30882796</idno>
<idno type="doi">10.3791/59010</idno>
<idno type="wicri:Area/PubMed/Corpus">000606</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000606</idno>
<idno type="wicri:Area/PubMed/Curation">000606</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000606</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000417</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000417</idno>
<idno type="wicri:Area/Ncbi/Merge">002150</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting.</title>
<author>
<name sortKey="Millet, Jean K" sort="Millet, Jean K" uniqKey="Millet J" first="Jean K" last="Millet">Jean K. Millet</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; INRA, Virologie et Immunologie Moléculaires.</nlm:affiliation>
<wicri:noCountry code="subField">Virologie et Immunologie Moléculaires</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tang, Tiffany" sort="Tang, Tiffany" uniqKey="Tang T" first="Tiffany" last="Tang">Tiffany Tang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Nathan, Lakshmi" sort="Nathan, Lakshmi" uniqKey="Nathan L" first="Lakshmi" last="Nathan">Lakshmi Nathan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jaimes, Javier A" sort="Jaimes, Javier A" uniqKey="Jaimes J" first="Javier A" last="Jaimes">Javier A. Jaimes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, College of Agricultural and Life Sciences, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Hung Lun" sort="Hsu, Hung Lun" uniqKey="Hsu H" first="Hung-Lun" last="Hsu">Hung-Lun Hsu</name>
<affiliation>
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University; Horae Gene Therapy Center, University of Massachusetts Medical School.</nlm:affiliation>
<wicri:noCountry code="subField">University of Massachusetts Medical School</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Daniel, Susan" sort="Daniel, Susan" uniqKey="Daniel S" first="Susan" last="Daniel">Susan Daniel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; gary.whittaker@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, College of Veterinary Medicine</wicri:regionArea>
<wicri:noRegion>College of Veterinary Medicine</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of visualized experiments : JoVE</title>
<idno type="eISSN">1940-087X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Containment of Biohazards</term>
<term>Coronavirus (pathogenicity)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Middle East Respiratory Syndrome Coronavirus (pathogenicity)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Virion (pathogenicity)</term>
<term>Virus Internalization (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Confinement de risques biologiques</term>
<term>Coronavirus (pathogénicité)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (pathogénicité)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Pénétration virale ()</term>
<term>Souris</term>
<term>Virion (pathogénicité)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronavirus</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>SARS Virus</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Virion</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Containment of Biohazards</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Confinement de risques biologiques</term>
<term>Humains</term>
<term>Pénétration virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The protocol aims to generate coronavirus (CoV) spike (S) fusion protein pseudotyped particles with a murine leukemia virus (MLV) core and luciferase reporter, using a simple transfection procedure of the widely available HEK-293T cell line. Once formed and released from producer cells, these pseudovirions incorporate a luciferase reporter gene. Since they only contain the heterologous coronavirus spike protein on their surface, the particles behave like their native coronavirus counterparts for entry steps. As such, they are the excellent surrogates of native virions for studying viral entry into host cells. Upon successful entry and infection into target cells, the luciferase reporter gets integrated into the host cell genome and is expressed. Using a simple luciferase assay, transduced cells can be easily quantified. An important advantage of the procedure is that it can be performed in biosafety level 2 (BSL-2) facilities instead of BSL-3 facilities required for work with highly pathogenic coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Another benefit comes from its versatility as it can be applied to envelope proteins belonging to all three classes of viral fusion proteins, such as the class I influenza hemagglutinin (HA) and Ebola virus glycoprotein (GP), the class II Semliki forest virus E1 protein, or the class III vesicular stomatitis virus G glycoprotein. A limitation of the methodology is that it can only recapitulate virus entry steps mediated by the envelope protein being investigated. For studying other viral life cycle steps, other methods are required. Examples of the many applications these pseudotype particles can be used in include investigation of host cell susceptibility and tropism and testing the effects of virus entry inhibitors to dissect viral entry pathways used.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">30882796</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1940-087X</ISSN>
<JournalIssue CitedMedium="Internet">
<Issue>145</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of visualized experiments : JoVE</Title>
<ISOAbbreviation>J Vis Exp</ISOAbbreviation>
</Journal>
<ArticleTitle>Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.3791/59010</ELocationID>
<Abstract>
<AbstractText>The protocol aims to generate coronavirus (CoV) spike (S) fusion protein pseudotyped particles with a murine leukemia virus (MLV) core and luciferase reporter, using a simple transfection procedure of the widely available HEK-293T cell line. Once formed and released from producer cells, these pseudovirions incorporate a luciferase reporter gene. Since they only contain the heterologous coronavirus spike protein on their surface, the particles behave like their native coronavirus counterparts for entry steps. As such, they are the excellent surrogates of native virions for studying viral entry into host cells. Upon successful entry and infection into target cells, the luciferase reporter gets integrated into the host cell genome and is expressed. Using a simple luciferase assay, transduced cells can be easily quantified. An important advantage of the procedure is that it can be performed in biosafety level 2 (BSL-2) facilities instead of BSL-3 facilities required for work with highly pathogenic coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Another benefit comes from its versatility as it can be applied to envelope proteins belonging to all three classes of viral fusion proteins, such as the class I influenza hemagglutinin (HA) and Ebola virus glycoprotein (GP), the class II Semliki forest virus E1 protein, or the class III vesicular stomatitis virus G glycoprotein. A limitation of the methodology is that it can only recapitulate virus entry steps mediated by the envelope protein being investigated. For studying other viral life cycle steps, other methods are required. Examples of the many applications these pseudotype particles can be used in include investigation of host cell susceptibility and tropism and testing the effects of virus entry inhibitors to dissect viral entry pathways used.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Millet</LastName>
<ForeName>Jean K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; INRA, Virologie et Immunologie Moléculaires.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Tiffany</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nathan</LastName>
<ForeName>Lakshmi</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jaimes</LastName>
<ForeName>Javier A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Agricultural and Life Sciences, Cornell University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Hung-Lun</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University; Horae Gene Therapy Center, University of Massachusetts Medical School.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Daniel</LastName>
<ForeName>Susan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whittaker</LastName>
<ForeName>Gary R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; gary.whittaker@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI135270</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI111085</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D059040">Video-Audio Media</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Vis Exp</MedlineTA>
<NlmUniqueID>101313252</NlmUniqueID>
<ISSNLinking>1940-087X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003264" MajorTopicYN="Y">Containment of Biohazards</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30882796</ArticleId>
<ArticleId IdType="doi">10.3791/59010</ArticleId>
<ArticleId IdType="pmc">PMC6677141</ArticleId>
<ArticleId IdType="mid">NIHMS1036494</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Dec;75(23):11464-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2001 Mar 15;166(6):3780-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238620</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2007 Jun;88(Pt 6):1753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2016 Sep 16;8(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27649230</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2009 Oct 25;393(2):265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Feb;88(3):1673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24257604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Mar;78(6):2994-3002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MethodsX. 2015 Oct 13;2:379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26587388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2012 Jan;179(1):226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22115786</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2010 Nov;169(2):365-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Sep 3;321(4):994-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Feb;2(2):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Sep;78(17):9007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308697</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2002 Sep 1;300(2):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12350351</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jul;88(13):7317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24741091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Oct 18;6:35537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27752100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2004 Aug 15;326(1):140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262502</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Jul 21;436(7049):401-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2014 Aug;95(Pt 8):1634-1639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24814925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2009 Oct 10;393(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692105</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405687</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Mar 1;446(7131):92-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287727</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2001 Mar;19(3):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231554</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2016 Jun;161(6):1447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10016-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Virol. 2015 Jun;59(2):189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26104337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12761383</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bio Protoc. 2016 Dec 5;6(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1995 Feb 1;206(2):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7531918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 1999 Oct;64(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2016 Feb 3;34(6):814-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26706278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2016 Sep;133:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27424494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2003 Jan;10(1):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12522053</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Langmuir. 2013 May 28;29(21):6409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631561</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6418-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222688</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1999 Aug 15;261(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10441556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Jul 23;285(30):22758-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Apr;72(4):3155-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Apr 12;446(7137):801-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17325668</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2017 Dec 8;429(24):3875-3892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056462</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2018 Apr;517:3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29275820</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2008 Nov;153(2):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18722473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2003 Mar 3;197(5):633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2003 Jan 5;305(1):115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504546</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2016 Dec 21;5(12):e126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27999426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hepatology. 2012 Mar;55(3):720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22105803</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15382-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2018 Jul;99(7):908-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29786498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Ecol Epidemiol. 2014 Jan 15;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24455106</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomaterials. 2013 Oct;34(32):7895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2798-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053738</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Hsu, Hung Lun" sort="Hsu, Hung Lun" uniqKey="Hsu H" first="Hung-Lun" last="Hsu">Hung-Lun Hsu</name>
<name sortKey="Millet, Jean K" sort="Millet, Jean K" uniqKey="Millet J" first="Jean K" last="Millet">Jean K. Millet</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Tang, Tiffany" sort="Tang, Tiffany" uniqKey="Tang T" first="Tiffany" last="Tang">Tiffany Tang</name>
</region>
<name sortKey="Daniel, Susan" sort="Daniel, Susan" uniqKey="Daniel S" first="Susan" last="Daniel">Susan Daniel</name>
<name sortKey="Jaimes, Javier A" sort="Jaimes, Javier A" uniqKey="Jaimes J" first="Javier A" last="Jaimes">Javier A. Jaimes</name>
<name sortKey="Nathan, Lakshmi" sort="Nathan, Lakshmi" uniqKey="Nathan L" first="Lakshmi" last="Nathan">Lakshmi Nathan</name>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:30882796
   |texte=   Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:30882796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021