Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies.

Identifieur interne : 000243 ( Ncbi/Merge ); précédent : 000242; suivant : 000244

Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies.

Auteurs : Victor C. Hou [États-Unis] ; Gregory R. Moe ; Zyde Raad ; Tomi Wuorimaa ; Dan M. Granoff

Source :

RBID : pubmed:14638771

Descripteurs français

English descriptors

Abstract

NspA is a conserved membrane protein that elicits protective antibody responses in mice against Neisseria meningitidis. A recent crystallographic study showed that NspA adopts an eight-stranded beta-barrel structure when reconstituted in detergent. In order to define the segments of NspA-containing epitopes recognized by protective murine anti-NspA antibodies, we studied the binding of two bactericidal and protective anti-NspA monoclonal antibodies (MAbs), AL12 and 14C7. Neither MAb binds to overlapping synthetic peptides (10-mers, 12-mers, and cyclic 12-mers) corresponding to the entire mature sequence of NspA, or to denatured recombinant NspA (rNspA), although binding to the protein can be restored by refolding in liposomes. Based on the ability of the two MAbs to bind to Escherichia coli microvesicles prepared from a set of rNspA variants created by site-specific mutagenesis, the most important contacts between the MAbs and NspA appear to be located within the LGG segment of loop 3. The conformation of loop 2 also appears to be an important determinant, as particular combinations of residues in this segment resulted in loss of antibody binding. Thus, the two anti-NspA MAbs recognize discontinuous conformational epitopes that result from the close proximity of loops 2 and 3 in the three-dimensional structure of NspA. The data suggest that optimally immunogenic vaccines using rNspA will require formulations that permit proper folding of the protein.

DOI: 10.1128/iai.71.12.6844-6849.2003
PubMed: 14638771

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:14638771

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies.</title>
<author>
<name sortKey="Hou, Victor C" sort="Hou, Victor C" uniqKey="Hou V" first="Victor C" last="Hou">Victor C. Hou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Children's Hospital Oakland Research Institute, Oakland, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Oakland Research Institute, Oakland, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moe, Gregory R" sort="Moe, Gregory R" uniqKey="Moe G" first="Gregory R" last="Moe">Gregory R. Moe</name>
</author>
<author>
<name sortKey="Raad, Zyde" sort="Raad, Zyde" uniqKey="Raad Z" first="Zyde" last="Raad">Zyde Raad</name>
</author>
<author>
<name sortKey="Wuorimaa, Tomi" sort="Wuorimaa, Tomi" uniqKey="Wuorimaa T" first="Tomi" last="Wuorimaa">Tomi Wuorimaa</name>
</author>
<author>
<name sortKey="Granoff, Dan M" sort="Granoff, Dan M" uniqKey="Granoff D" first="Dan M" last="Granoff">Dan M. Granoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14638771</idno>
<idno type="pmid">14638771</idno>
<idno type="doi">10.1128/iai.71.12.6844-6849.2003</idno>
<idno type="wicri:Area/PubMed/Corpus">002426</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002426</idno>
<idno type="wicri:Area/PubMed/Curation">002426</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002426</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002331</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002331</idno>
<idno type="wicri:Area/Ncbi/Merge">000243</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies.</title>
<author>
<name sortKey="Hou, Victor C" sort="Hou, Victor C" uniqKey="Hou V" first="Victor C" last="Hou">Victor C. Hou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Children's Hospital Oakland Research Institute, Oakland, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Children's Hospital Oakland Research Institute, Oakland, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moe, Gregory R" sort="Moe, Gregory R" uniqKey="Moe G" first="Gregory R" last="Moe">Gregory R. Moe</name>
</author>
<author>
<name sortKey="Raad, Zyde" sort="Raad, Zyde" uniqKey="Raad Z" first="Zyde" last="Raad">Zyde Raad</name>
</author>
<author>
<name sortKey="Wuorimaa, Tomi" sort="Wuorimaa, Tomi" uniqKey="Wuorimaa T" first="Tomi" last="Wuorimaa">Tomi Wuorimaa</name>
</author>
<author>
<name sortKey="Granoff, Dan M" sort="Granoff, Dan M" uniqKey="Granoff D" first="Dan M" last="Granoff">Dan M. Granoff</name>
</author>
</analytic>
<series>
<title level="j">Infection and immunity</title>
<idno type="ISSN">0019-9567</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Antibodies, Monoclonal (immunology)</term>
<term>Bacterial Outer Membrane Proteins (chemistry)</term>
<term>Bacterial Outer Membrane Proteins (genetics)</term>
<term>Bacterial Outer Membrane Proteins (immunology)</term>
<term>Epitopes (immunology)</term>
<term>Humans</term>
<term>Liposomes</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Neisseria meningitidis (immunology)</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
<term>Rats</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps monoclonaux (immunologie)</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Liposomes</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Neisseria meningitidis (immunologie)</term>
<term>Pliage des protéines</term>
<term>Protéines de la membrane externe bactérienne ()</term>
<term>Protéines de la membrane externe bactérienne (génétique)</term>
<term>Protéines de la membrane externe bactérienne (immunologie)</term>
<term>Protéines recombinantes</term>
<term>Rats</term>
<term>Souris</term>
<term>Séquence d'acides aminés</term>
<term>Épitopes (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Outer Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Outer Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Bacterial Outer Membrane Proteins</term>
<term>Epitopes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de la membrane externe bactérienne</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps monoclonaux</term>
<term>Neisseria meningitidis</term>
<term>Protéines de la membrane externe bactérienne</term>
<term>Épitopes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Neisseria meningitidis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Humans</term>
<term>Liposomes</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
<term>Rats</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Liposomes</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Pliage des protéines</term>
<term>Protéines de la membrane externe bactérienne</term>
<term>Protéines recombinantes</term>
<term>Rats</term>
<term>Souris</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NspA is a conserved membrane protein that elicits protective antibody responses in mice against Neisseria meningitidis. A recent crystallographic study showed that NspA adopts an eight-stranded beta-barrel structure when reconstituted in detergent. In order to define the segments of NspA-containing epitopes recognized by protective murine anti-NspA antibodies, we studied the binding of two bactericidal and protective anti-NspA monoclonal antibodies (MAbs), AL12 and 14C7. Neither MAb binds to overlapping synthetic peptides (10-mers, 12-mers, and cyclic 12-mers) corresponding to the entire mature sequence of NspA, or to denatured recombinant NspA (rNspA), although binding to the protein can be restored by refolding in liposomes. Based on the ability of the two MAbs to bind to Escherichia coli microvesicles prepared from a set of rNspA variants created by site-specific mutagenesis, the most important contacts between the MAbs and NspA appear to be located within the LGG segment of loop 3. The conformation of loop 2 also appears to be an important determinant, as particular combinations of residues in this segment resulted in loss of antibody binding. Thus, the two anti-NspA MAbs recognize discontinuous conformational epitopes that result from the close proximity of loops 2 and 3 in the three-dimensional structure of NspA. The data suggest that optimally immunogenic vaccines using rNspA will require formulations that permit proper folding of the protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14638771</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0019-9567</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>71</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2003</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Infection and immunity</Title>
<ISOAbbreviation>Infect. Immun.</ISOAbbreviation>
</Journal>
<ArticleTitle>Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies.</ArticleTitle>
<Pagination>
<MedlinePgn>6844-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>NspA is a conserved membrane protein that elicits protective antibody responses in mice against Neisseria meningitidis. A recent crystallographic study showed that NspA adopts an eight-stranded beta-barrel structure when reconstituted in detergent. In order to define the segments of NspA-containing epitopes recognized by protective murine anti-NspA antibodies, we studied the binding of two bactericidal and protective anti-NspA monoclonal antibodies (MAbs), AL12 and 14C7. Neither MAb binds to overlapping synthetic peptides (10-mers, 12-mers, and cyclic 12-mers) corresponding to the entire mature sequence of NspA, or to denatured recombinant NspA (rNspA), although binding to the protein can be restored by refolding in liposomes. Based on the ability of the two MAbs to bind to Escherichia coli microvesicles prepared from a set of rNspA variants created by site-specific mutagenesis, the most important contacts between the MAbs and NspA appear to be located within the LGG segment of loop 3. The conformation of loop 2 also appears to be an important determinant, as particular combinations of residues in this segment resulted in loss of antibody binding. Thus, the two anti-NspA MAbs recognize discontinuous conformational epitopes that result from the close proximity of loops 2 and 3 in the three-dimensional structure of NspA. The data suggest that optimally immunogenic vaccines using rNspA will require formulations that permit proper folding of the protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Victor C</ForeName>
<Initials>VC</Initials>
<AffiliationInfo>
<Affiliation>Children's Hospital Oakland Research Institute, Oakland, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moe</LastName>
<ForeName>Gregory R</ForeName>
<Initials>GR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raad</LastName>
<ForeName>Zyde</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wuorimaa</LastName>
<ForeName>Tomi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Granoff</LastName>
<ForeName>Dan M</ForeName>
<Initials>DM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI045642</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI046464</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI46464</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI45642</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Infect Immun</MedlineTA>
<NlmUniqueID>0246127</NlmUniqueID>
<ISSNLinking>0019-9567</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001425">Bacterial Outer Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000939">Epitopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008081">Liposomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C105506">NspA protein, Neisseria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001425" MajorTopicYN="N">Bacterial Outer Membrane Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000939" MajorTopicYN="N">Epitopes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008081" MajorTopicYN="N">Liposomes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009345" MajorTopicYN="N">Neisseria meningitidis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="Y">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14638771</ArticleId>
<ArticleId IdType="pmc">PMC308938</ArticleId>
<ArticleId IdType="doi">10.1128/iai.71.12.6844-6849.2003</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1999 Nov;67(11):5664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10531214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1999 Dec;180(6):1894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10558946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2001 May 3;344(18):1378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Jun;69(6):3762-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11349041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2001 Aug 14;19(31):4347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11534497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Oct;69(10):5981-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 Dec 1;167(11):6487-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2001 Dec 12;20(5-6):666-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11738731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3417-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2002 Apr 27;359(9316):1499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Nov;70(11):6021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 4;278(27):24825-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12716881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Apr 16;298(4):1015-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4738145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1983 Aug 13;2(8346):355-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6135869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1988 Jan;4(1):27-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3143890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1995 Jun;171(6):1481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7769282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Jan;23(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9044262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1997 Apr 7;185(7):1173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9104804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Mar;180(5):1323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9495774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1999 Sep;67(9):4955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10456958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Granoff, Dan M" sort="Granoff, Dan M" uniqKey="Granoff D" first="Dan M" last="Granoff">Dan M. Granoff</name>
<name sortKey="Moe, Gregory R" sort="Moe, Gregory R" uniqKey="Moe G" first="Gregory R" last="Moe">Gregory R. Moe</name>
<name sortKey="Raad, Zyde" sort="Raad, Zyde" uniqKey="Raad Z" first="Zyde" last="Raad">Zyde Raad</name>
<name sortKey="Wuorimaa, Tomi" sort="Wuorimaa, Tomi" uniqKey="Wuorimaa T" first="Tomi" last="Wuorimaa">Tomi Wuorimaa</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Hou, Victor C" sort="Hou, Victor C" uniqKey="Hou V" first="Victor C" last="Hou">Victor C. Hou</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000243 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000243 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:14638771
   |texte=   Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:14638771" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021